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A B S T R A C T   

The Qinghai-Tibet Plateau (QTP) is a typical ecologically fragile area. Once the surface vegetation degenerates, it 
may not be restored. This requires the development of soil organic matter (SOM) monitoring method without 
destroying the surface, so as to ensure the sustainable development of plateau agriculture. This work investigated 
the environmental factors that are significantly related to SOM content in the river valley of the southern QTP. 
These environmental factors include soil hydrothermal factors (soil moisture content and soil temperature), 
topographic factors (elevation and slope) and vegetation factor (NDVI). The original band reflectivity (OR) of 
Landsat 8 OLI images and the band reflectivity after the first-order derivative (FDR) and the second-order de-
rivative (SDR) processing were combined with the above environmental factors to estimate SOM content. The 
results showed that the accuracy of the model was improved obviously by adding environmental factors. The 
estimation effect of back propagation neural network (BPNN) model was better than that of geographically 
weighted regression (GWR) model, partial least squares regression (PLSR) model and multivariable linear 
regression (MLR) model. GWR model can also meet the estimation requirements, while PLSR and MLR models 
cannot achieve effectively the estimation of SOM content. FDR-BPNN model considering environmental factors 
was the best model for estimating SOM content, with R2 being 0.947, RMSEC being 4.701 g⋅kg− 1 and MAEV 
being 5.485 g⋅kg− 1. Moreover, the model had the lowest uncertainty and the highest stability. This study will 
provide a good insight for the monitoring of SOM content in the future, and provide basic data support for the 
implementation of precision agriculture in the QTP.   

1. Introduction 

The Qinghai-Tibet Plateau (QTP) is one of the most fragile areas all 
around the world with high terrain and harsh natural conditions. The 
cultivated land area of the QTP only accounts for 0.5% of the total land 
area and is mainly distributed in the middle reaches of the Brahmaputra 
in the south of the QTP (Dai et al., 2014; Li et al., 2019). To protect the 
fragile environment, chemical fertilizer is strictly controlled (around 
only 0.1% of average unit usage in China) in the QTP. The growth of 
crops mainly depends on the supply of nutrients by soil organic matter 
(SOM). SOM contains a variety of nutrients for crop growth, which can 
provide various nutrients for crop growth directly after decomposition 
(Schmidt et al., 2011; Zhao et al., 2016; Zhu et al., 2007). Therefore, 

non-destructive monitoring of SOM in the QTP is of great theoretical and 
practical significance for the implementation of regional precision 
agriculture. 

The traditional method for SOM quantification mainly relies on in 
situ sampling and chemical analysis. It is reliable but costly and time- 
consuming, as well as incapable of providing detailed spatial distribu-
tion (Caddeo et al., 2019; Chacón Iznaga et al., 2014; Gruba et al., 2015). 
Besides, the earth surface has to be damaged during the sampling pro-
cess, and thus becomes inapplicable for fragile areas where ecosystem 
resistance and resilience are weak. Therefore, it is very important to 
carry out non-destructive surface monitoring for the QTP. How to esti-
mate SOM content effectively, quickly and in large area is thus desired in 
these fragile areas such as the QTP. In recent years, remote sensing 
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technology provides a new way for nondestructive monitoring of soil 
internal components. Many scholars have used the near surface hyper-
spectral technology to estimate the SOM content, mainly using a 
portable spectrometer to collect the soil spectrum and establish various 
estimation models (Allory et al., 2019; Conforti et al., 2015; Dotto et al., 
2017; Guo et al., 2017a,b; Nawar and Mouazen, 2018). At present, the 
commonly used estimation models mainly include linear models such as 
multiple linear regression (MLR) and partial least square regression 
(PLSR), as well as machine learning methods such as neural network 
with high accuracy in spectral inversion research (Caddeo et al., 2019; 
Dotto et al., 2017; Jin et al., 2016; Li et al., 2015). The accuracy of 
hyperspectral model for estimating SOM content can meet the re-
quirements of precision agriculture, but the data processing and calcu-
lation process are complex and the observation scale is small. There are 
also a large number of scholars using remote sensing image to estimate 
SOM content (Jin et al., 2017; Lu et al., 2018; Mirzaee et al., 2016; 
Pouladi et al., 2019; Wang et al., 2018). This makes up for the limited 
data of large-scale soil mapping, but its accuracy is not enough to meet 
the mapping requirements. 

The biggest limitation of SOM content estimation by remote sensing 
technology is the heterogeneous underlying surface. For example, the 
difference in topography, soil moisture and other characteristics will 
greatly limit the accuracy of SOM remote sensing inversion (Funes et al., 
2019; Grunwald et al., 2017; Ondrasek et al., 2019). Soil is not homo-
geneous, and its spatial variation is affected by climate, topography, 
vegetation and other structural factors, as well as fertilization, farming 
measures, planting system and other random factors. A large number of 
studies have showed that there is a significant relationship between 
SOM content and environmental factors (Gruba et al., 2015; Grunwald 
et al., 2017; Muñoz and Kravchenko, 2011; Ondrasek et al., 2019), 
which provides a theoretical basis for quantitative prediction of soil 
properties by environmental attributes. 

In this study, environmental factors were taken as co-factors and 
combined with Landsat 8 OLI images to carry out estimation research on 
SOM content. The agricultural area in the southern valley of the QTP 
was taken as the study area. The study area is characterized by high 
terrain, cold all year round, and fragile ecological environment. The 
objectives of this study were to: (1) compare the accuracy of estimation 
of SOM content with and without environmental factors, (2) compare 
the ability of SOM content estimation of Landsat 8 OLI image before and 

after derivative processing, (3) compare the advantages and disadvan-
tages of back propagation neural network (BPNN), geographically 
weighted regression (GWR), PLSR, MLR model in estimating SOM con-
tent, and (4) determine the best spatial estimation method of SOM 
content and map the accurate SOM content spatial distribution in the 
study area. 

2. Materials and methods 

2.1. Study area and sample preparation 

The study area (28◦04′05′′–31◦03′57′′N, 87◦22′01′′–95◦18′50′′E), as 
shown in Fig. 1, is located in the south of the QTP, belonging to the 
Brahmaputra valley. It has temperate and semi-arid plateau monsoon 
climate, with an annual average rainfall, sunshine and total radiation of 
444.8 mm, about 3,000 h, and 191 kcal/cm2, respectively. The climate 
condition is suitable for the growth of crops, and local agriculture de-
velops steadily. As one of the main grain-producing bases in the QTP, 
currently, this region is cultivated with highland barley, wheat, oats and 
some other cold resistant crops. 

Soil sampling was conducted from September 9 to September 19, 
2018. A total of 83 sampling sites were selected considering the prin-
ciples of randomness and representativeness based on the land-use sta-
tus, topographic features, digital elevation model (DEM) and so on 
(Fig. 1). When sampling, soil moisture and temperature were synchro-
nously measured using a TZS-pHW-4G multiparameter tachometer (TOP 
Instrument, Zhejiang, China), and the latitude, longitude of the sampling 
sites were also recorded by global positioning system (GPS). Then we 
used a wooden spatula to collect soil to a depth of 0–20 cm and removed 
coarse stones and plant debris and roots from the soil. All samples were 
put into self-sealing bags and brought back to the laboratory for analysis. 
Soil samples were air dried, and debris such as dead leaves, bricks, tiles 
and garbage were picked up. After filtering with a 0.25 mm nylon sieve, 
the samples were further analyzed by the concentrated sulfuric acid-
–potassium dichromate volumetric heating method. Reagent blanks, 
duplicate tests, and standard reference materials were applied for 
analytical quality control. 

Fig. 1. The study area and spatial distribution of sampling sites.  
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2.2. Landsat 8 OLI image preprocessing and derivative processing 

13 Landsat 8 OLI images were collected from the Geospatial Data 
Cloud website (http://www.gscloud.cn/) according to the sampling 
time and cloud amount of this study. In ENVI 5.3 (Exelis Visual Infor-
mation Solutions, Boulder, Colorado, USA) software, images were pre- 
processed including radiation calibration, atmospheric correction, 
image stitching, and clipping. In the radiation calibration process, the 
useless cirrus wave band (B9) and quality inspection band (BQA) were 
automatically eliminated, and the two bands of thermal infrared and the 
panchromatic band were not involved in the calculation because of the 
different resolutions. Therefore, only 7 bands of images were left after 
radiometric calibration. In this study, bands 1–7 were selected for 
analysis. The specific introduction of the original band reflectivity (OR) 
is shown in Table 1. 

After preprocessing, the first-order derivative of band reflectivity 
(FDR) and the second-order derivative of band reflectivity (SDR) were 
processed by ENVI 5.3 software, and the formulas are as follows. 

FDR(λi) =
R(λi+1) − R(λi− 1)

2Δλ
(1)  

SDR(λi) =
FDR(λi+1) − FDR(λi− 1)

2Δλ
(2)  

whereλi− 1, λi and λi+1 are wavelengths, Δλ represents the interval be-
tween two adjacent wavelengths,FDR(λi) is the first derivative reflec-
tivity of wavelength λi,SDR(λi) is the second derivative reflectivity of 
wavelength λi. 

2.3. Sources and processing of environmental data 

The field surface reflectance is the result of the interaction of various 
surface factors. It is too ideal to establish SOM estimation model only by 
reflectance without considering the influence of other factors in the 
field, which will inevitably lead to the reduction of surveying and 
mapping accuracy. Therefore, in order to make the prediction results 
more in line with the actual situation, this study considered the impact 
of environmental factors, i.e., soil moisture, soil temperature, vegetation 
factors and terrain factors that have a significant impact on soil spectral 
reflectance. 

2.3.1. Terrain factors 
Elevation and slope data were selected to reflect the terrain char-

acteristics of the study area. These two factors affect the hydrological 
and ecological processes such as surface runoff, plant growth and dis-
tribution, and then affect the spatial distribution of soil characteristics 
(Croft et al., 2012; Guo et al., 2013; Lu et al., 2018; Pouladi et al., 2019). 
Elevation and slope data were extracted from ASTER GDEM (htt 
p://www.gscloud.cn/) through the spatial analysis tool of ArcGIS 10.5 
(ESRI, Redlands, California, USA) software. The extracted elevation is 
shown in Fig. 2(b) and the extracted slope is shown in Fig. 2(c). 

2.3.2. Vegetation factor 
Normalized difference vegetation index (NDVI) is the most 

commonly used vegetation index to reflect vegetation coverage, and is 

the best indicator of plant growth status and vegetation spatial distri-
bution density (Pouladi et al., 2019; Wu et al., 2009). The greater the 
coverage of surface vegetation, the more abundant surface litter and 
leaves. The residual roots and leaves are decomposed by microorgan-
isms, thus increasing the content of SOM. NDVI was extracted from 
Landsat 8 OLI image after preprocessing (Fig. 2(a)), and its formula is: 

NDVI = (float(Band5) − float(Band4))/(float(Band5)+ float(Band4)) (3)  

2.3.3. Soil hydrothermal factors 
The transformation of SOM is closely related to soil temperature. 

High temperature can make organic matter decompose quickly, while 
low temperature can inhibit organic matter decomposition (Guo et al., 
2017a,b; Wang et al., 2009; Wu et al., 2009). Soil temperature is of great 
significance to the humification process, the mineralization process and 
the nutrient supply of plants, which affects the growth of plants and the 
formation of soil. In addition, due to the influence of soil moisture 
content on soil microbial activities, too much or too little water will have 
a certain impact on SOM content. Based on the observed soil tempera-
ture and moisture content data for each sampling site, we used the IDW 
interpolation tool of ArcGIS software to draw the spatial distribution 
map of soil temperature (Fig. 2(d)) and soil moisture content (Fig. 2(e)). 
The spatial distribution maps of soil temperature and soil moisture 
content were drawn by using IDW interpolation tool of ArcGIS 10.5 
software. The resampling tool was used to sample the spatial resolution 
to 30 m, and the distribution diagrams of soil temperature and soil 
moisture content after treatment are shown in Figs. 5 and 6. 

2.4. Modeling approaches 

In addition to the two commonly used regression models, MLR and 
PLSR, we also used the back propagation neural network (BPNN) model, 
and the geographically weighted regression (GWR) model. Both models 
are described below. 

BPNN: BPNN is a mechanical learning model. It is a multilayer 
feedforward neural network trained according to error back propagation 
algorithm, and it is the most widely used neural network. The basic BP 
algorithm includes two processes: the forward propagation of signal and 
the back propagation of error. In forward propagation, the input signal 
acts on the output node through the hidden layer and generates the 
output signal through nonlinear transformation. If the actual output 
does not conform to the expected output, the error back propagation 
process will be transferred. Error backpropagation is to transmit the 
output error to the input layer by layer through the hidden layer, and to 
allocate the error to all cells in each layer, and the error signal obtained 
from each layer is used as the basis for adjusting the weight of each cell. 

BPNN has the ability of arbitrary complex pattern classification and 
excellent multi-dimensional function mapping, which solves some 
problems that cannot be solved by simple perceptron. In terms of 
structure, BP network has input layer, hidden layer and output layer; in 
essence, BP algorithm takes the square of network error as the objective 
function and uses gradient descent method to calculate the minimum 
value of the objective function (Tian et al., 2013). 

GWR: GWR is a new spatial analysis method, which detects the non- 
stationarity of spatial relationships by embedding the spatial structure 
into the linear regression model (Fotheringham et al., 1998). It is an 
extension of the general linear regression model, embedding the actual 
geographic location into the regression parameters: 

yi = β0(ui, vi)+ β1(ui, vi)xi1 + β2(ui, vi)xi2 + ⋅⋅⋅+ βk(ui, vi)xik + εi i

= 1, 2, 3, ⋅⋅⋅, n, (4)  

where xi1, xi2, …, xik represent measured value of the variable k at the 
sampling site i, (ui, vi) represents the longitude and latitude of the 
sampling site i, εi represents the random error at the sampling site i, 
βk(ui, vi) represents the value of the kth regression parameter of sampling 

Table 1 
Specific information of each band of Landsat 8 OLI image.  

Band name Bandwidth (um) Spatial resolution (m) 

Band 1 0.43–0.45 30 
Band 2 0.45–0.51 30 
Band 3 0.53–0.59 30 
Band 4 0.64–0.67 30 
Band 5 0.85–0.88 30 
Band 6 1.57–1.65 30 
Band 7 2.11–2.29 30  
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site i. The basic principle of geographically weighted regression is to use 
the method that the distribution characteristics of the research area have 
the quantitative relationship between two or more variables, and 
consider the local characteristics as the weight when processing the data 
(Chacón Iznaga et al., 2014). It is characterized by the assumption that 
the regression coefficient is the location function of the location of the 
observation point in the linear regression model, and the spatial char-
acteristics of the data are included in the model. 

2.5. Flowchart and model performance evaluation 

The technical flow chart of this study is shown in Fig. 3, and the data 
used is shown in Table 2. Kennard-Stone (K-S) algorithm is a kind of 
clustering algorithm, which has been widely used in the division of data 
sets, especially suitable for dividing samples for spectral analysis (Nawar 
and Mouazen, 2018; Vohland et al., 2016). In this study, K-S algorithm 
was used to categorize 83 samples into calibration dataset and valida-
tion dataset according to the Euclidean Distance between samples. The 
calibration dataset included 55 samples and the validation dataset 
included 28 samples. Model determination coefficient (R2), root mean 
square error of calibration (RMSEC), root mean square error of valida-
tion (RMSEV), mean absolute error of calibration (MAEC) and mean 
absolute error of validation (MAEV) were used to verify the accuracy of 
the model. The calculation formulas of RMSE and MAE are shown in 
formula (5) - (6). The larger R2 is, the smaller the RMSEC is, the smaller 
the MAEC is, indicating that the modeling effect is better. The smaller 
the RMSEV is, the smaller the MAEV is, indicating that the model pre-
diction accuracy is higher. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(εi − ε’

i)
2
/n

√

(5)  

MAE =
1
n
∑n

i=1

⃒
⃒εi − ε’

i

⃒
⃒ (6)  

where εi is the measured SOM content, ε’
i is the predicted SOM content, 

εi is the mean value of the measured SOM content, and n is the number of 
sampling sites. 

2.6. Model uncertainty analysis 

In this study, d − factor was used for uncertainty analysis of the 
model. The greater the value of d − factor, the greater the uncertainty of 
the model. The smaller the value of d − factor, the less the uncertainty of 
the model, and the more stable the model. The formula of d − factor is as 
follows: 

dr =
1
n
∑n

i=1
(YUi − YLi) (7)  

d − factor =
dr

σY
(8)  

where dr is the average distance between the indicative upper limit YUi 
and the lower limit YLi. n is the number of samples, and σY is the stan-
dard deviation of SOM measured content. 

Fig. 2. Spatial distribution of environmental factors in the study area.  
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3. Results 

3.1. Statistical analysis of SOM content 

The statistical characteristics of calibration and validation datasets 
were similar (Table 3), and the interval distribution was reasonable, 
which proved the reliability of the model to be built. Table 3 also 
showed the comparison of the SOM content in the study area with that of 
other typical regions in the world. The average content in the study area 
was 11.41 g⋅kg− 1 higher than that in the whole southwest QTP, with the 
highest value being nearly twice as high. Compared with other areas of 
the plateau, the river valley has lower altitude, flat terrain, higher 
temperature and better precipitation conditions, which benefits the 
accumulation of SOM (Dai et al., 2014; Grunwald et al., 2017; Li et al., 
2019). The average SOM content in the study area was 6.42 g⋅kg− 1 lower 
than that in Fujian Province. The average SOM content was also higher 
than that in Beijing and Hubei Province, particularly in the Loess Plateau 
with severe soil erosion and poor soil nutrients where the average 
content was only 12.83 g⋅kg− 1. Compared with other regions over the 
world, it was 8.11 g⋅kg− 1 higher than Calabria of Italy, similar to Santa 
Catarina of Brazil, but much lower than Viborg of Denmark, Hawaii and 

Fig. 3. Technical flow chart of this study.  

Table 2 
The data used for estimation in this study.  

Data type Variables Spatial 
resolution 
(m) 

Source 

Landsat 8 OLI 
image 

OR (1–7 band) 30 http://www.gscloud.cn/ 
FDR (1–7 
band) 

30 http://www.gscloud.cn/ 

SDR (1–7 
band) 

30 http://www.gscloud.cn/  

Soil 
hydrothermal 
factors 

Soil moisture 
Content 

30 Field measurement, 
spatial interpolation, 
resampling 

Soil 
temperature 

30 Field measurement, 
spatial interpolation, 
resampling  

Terrain factors Elevation 30 http://www.gscloud.cn/ 
Slope 30 http://www.gscloud.cn/  

Vegetation factor NDVI 30 http://www.gscloud.cn/  
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Florida of United States and Eastern Canada. 

3.2. Correlation analysis of band spectral reflectance and SOM content 

The basis of remote sensing estimation is to find the relationship 
between remote sensing data and ground feature parameters. The im-
ages processed by the first and second derivatives of each band are 
shown in Figs. 4 and 5, respectively. In order to clarify the relationship 
between SOM content and the multispectral band, the correlation 
analysis between the multispectral reflectance data and the measured 
SOM content was used in this study (Table 4). 

It could be seen that band 1–5 of the original image had a weak 
negative correlation with SOM content in the study area, while band 6 
and band 7 had extremely significant correlation with SOM content, and 
the correlation coefficients of 0.366 and 0.342. After the first derivative 

transformation of reflectivity, it was found that band 2 and band 5 
showed significant correlation with SOM content. Band 6 showed sig-
nificant correlation with SOM content and band 7 showed extremely 
significant correlation with SOM content. Only band 6 and band 7 had 
correlation with SOM content after the second derivative transformation 
of reflectivity, and other bands had weak correlation with SOM content. 
It can be found that the correlation between the band reflectance pro-
cessed by the first-order derivative and soil organic matter content was 
obviously enhanced. However, the band reflectance processed by the 
second-order derivative did not show a good effect, which may be the 
lack of spectral information after the second-order derivative 
transformation. 

Table 3 
Comparison of SOM content in the study area with other typical areas.   

Mean (g⋅kg− 1) Minimum (g⋅kg− 1) Maximum (g⋅kg− 1) Standard deviation (g⋅kg− 1) CV (%) Reference 

Entire dataset 34.31 11.21 96.37 20.70 60.33 — 
Calibration dataset 34.34 11.55 96.37 20.57 59.90 — 
Validation dataset 34.26 11.21 93.08 21.32 62.23 — 
Southwest QTP, China 22.90 2.40 53.66 — — Dai et al., 2014 
Beijing, China 14.88 0.49 53.05 5.16 35.00 Hu et al., 2014 
Fujian Province, China 40.73 16.42 78.74 14.07 34.50 Liu et al. 2020 
Hubei Province, China 27.30 6.10 71.8 12.0 43.81 Hong et al., 2018 
Loess Plateau, China 12.83 6.10 20.20 2.46 19.18 Chen et al., 2019 
Calabria, Italy 26.20 3.00 65.00 14.30 — Conforti et al., 2015 
Florida, America 57.29 3.36 854.47 — — Knox et al., 2015 
Viborg, Denmark 77.92 12.59 307.73 — — Kuang et al., 2015 
Hawaii, America 185.33 2.59 953.199 13.89 — McDowell et al., 2012 
Santa Catarina, Brazil 33.79 3.62 118.44 10.60 — Dotto et al., 2017 
Eastern Canada 42.00 23.00 73.00 — 26.00 Mabit and Bernard, 2010  

Fig. 4. The first-derivative of reflectivity in each band.  
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3.3. Descriptive statistics of environmental factors in the study area 

Environmental factors have a certain impact on the spatial distri-
bution of SOM content, but the impact is different among different 
environmental factors. Table 5 is the descriptive statistics of environ-
mental factors in the study area. The elevation of the sample sites was 
between 2940 m and 5680 m, and the average elevation was 4139.53 m, 
suggesting the terrain of the study area was very high. The maximum 
slope of the study area was 43.39◦ and the minimum slope was 1.01◦. 

NDVI was between − 0.55 and 0.76, with an average value of 0.19, and 
its CV was 126.31%, indicating an uneven vegetation distribution in the 
study area. The change of soil moisture content in each sample site was 
also large, ranging from 12.80% to 56.50%, with an average of 29.36%. 
The average soil temperature was 21.14 ◦C. Because the study area is 
located in the valley area, the soil temperature is high, which is suitable 
for the growth of crops. 

3.4. Model calibration and validation 

The calibration and validation results of various estimation models 
are shown in Table 6. For calibration model, the estimation accuracy of 
the spectral model with environmental factors was much higher than 
that with multispectral bands only. It was obvious that the R2 of BPNN 
model built by adding environmental factors was greater than 0.9, 
which was about 0.5 higher than that of BPNN model built only by multi 
spectral bands. The FDR-BPNN model with environmental factors was 
the best one. Its R2 was 0.947, RMSEC was 4.701 g⋅kg− 1, MAEC was 
3.254 g⋅kg− 1, R2 was higher than all other models, and RMSEC and 
MAEC were lower than other models, which showed that the FDR-BPNN 
model with environmental factors had the best estimation effect. In 

Fig. 5. The second-derivative of reflectivity in each band.  

Table 4 
Correlation between the reflectance of each band and SOM content.  

Pretreatment method Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

OR − 0.156 − 0.137 − 0.093 − 0.056 − 0.065 0.366** − 0.342** 

FDR 0.001 0.220* 0.208 0.067 0.256* 0.247* − 0.313** 

SDR 0.160 0.167 − 0.054 0.182 0.198 − 0.294** − 0.296**  

** Correlation is significant at the 0.01 level. 
* Correlation is significant at the 0.05 level 

Table 5 
Statistics of environmental factors in the study area.  

Environmental 
factor 

Minimum Maximum Mean Standard 
deviation 

CV (%) 

Soil temperature 
(℃) 

9.00 32.30 21.14 5.16 24.41 

Soil moisture 
content (%) 

12.80 56.50 29.36 8.86 30.18 

NDVI − 0.55 0.76 0.19 0.24 126.31 
Slope (◦) 1.01 49.39 13.52 11.38 84.17 
Elevation (m) 2940.00 5680.00 4139.53 627.92 15.169  
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Table 6 
The result statistics of calibration models and validation models.  

Method Model Calibration dataset Validation dataset 

R2 RMSEC (g⋅kg− 1) MAEC (g⋅kg− 1) RMSEV (g⋅kg− 1) MAEV (g⋅kg− 1) 

Multispectral band OR MLR 0.323 16.775 12.590 18.460 13.902 
PLSR 0.269 17.424 13.544 20.762 16.751 
GWR 0.507 14.305 11.110 16.987 12.895 
BPNN 0.327 16.725 12.400 20.474 16.566 

FDR MLR 0.317 16.853 12.668 18.549 14.179 
PLSR 0.255 17.597 14.004 19.619 14.833 
GWR 0.439 15.258 11.712 16.714 12.267 
BPNN 0.417 15.557 11.494 18.727 14.906 

SDR MLR 0.286 17.225 13.195 19.942 15.800 
PLSR 0.225 17.949 13.934 20.636 16.453 
GWR 0.302 17.030 12.883 20.782 15.039 
BPNN 0.387 15.959 12.180 19.633 15.835  

Multispectral band added environmental data OR MLR 0.411 15.646 11.967 17.873 13.421 
PLSR 0.310 16.937 12.917 19.463 15.030 
GWR 0.666 11.781 8.862 13.032 9.578 
BPNN 0.909 6.119 4.332 7.293 5.236 

FDR MLR 0.410 15.644 11.719 17.888 13.358 
PLSR 0.311 16.916 13.201 18.972 14.327 
GWR 0.540 13.815 10.221 14.879 11.190 
BPNN 0.947 4.701 3.254 7.832 5.485 

SDR MLR 0.392 15.901 12.459 18.707 14.044 
PLSR 0.255 17.596 13.622 19.639 15.212 
GWR 0.385 15.984 12.412 22.837 15.915 
BPNN 0.917 6.057 4.345 13.884 10.511  

Red shadow represents the 95% confidence interval  

* Indicates the estimation model adding environmental data 

Fig. 6. Scatter plots of measured and predicted SOM contents of various BPNN models. (Red shadow represents the 95% confidence interval * Indicates the esti-
mation model adding environmental data). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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addition to the strong prediction ability of BPNN model with environ-
mental factors, OR-GWR model and FDR-GWR model with environ-
mental factors also showed good prediction effect. Their R2 were 0.666 
and 0.540, and RMSEC were 13.815 and 11.781 g⋅kg− 1, respectively. 
However, the estimation ability of MLR model and PLSR model was poor 
regardless of whether environmental factors were added or not, and 
regardless of which spectral processing methods were used. The vali-
dation results were consistent with the calibration results, i.e., the 
validation model with good calibration performance also showed high 
accuracy. From the aspect of verification model, the FDR-BPNN model 
with environmental factors was still the best one. All kinds of BPNN 
models with environmental factors had excellent prediction ability. For 
GWR models with environmental factors, the prediction results of the 
models based on OR and FDR are better, but the models based on SDR do 
not show good estimation results. The prediction ability of MLR model 
and PLSR model is very poor. 

Taking the BPNN modeling method as an example, the scatter dia-
grams of predicted and measured values of various BPNN models are 
drawn in Fig. 6. It was obvious that the estimation effect after adding 
environmental factors was much better than that without environmental 
factors, and the predicted value was in good agreement with the 
measured value (close to y = x line, Fig. 6(d)–(f)). In Fig. 6(e) the pre-
dicted value and measured value had the best fitting effect, indicating 
the FDR-BPNN model with environmental factors added showed the 
strongest estimation ability. 

In general, no matter which model, the estimation ability of the 
model became stronger after adding environmental factors. For the 
spectral processing method, the first derivative estimation was the best, 
followed by the estimation of the original spectral band. The effect of 
spectral bands after second-order transformation was the worst, which 
was not as good as the estimation effect of original spectral band. The 
BPNN model had the highest estimation ability, followed by GWR 
model, while the MLR and PLSR models established had poor perfor-
mance and could not achieve accurate estimation of SOM content. The 
FDR-BPNN model with environmental factors was the best model for 
estimating organic matter content. Fig. 7 shows the fitting diagram of 
predicted and measured SOM content of FDR-BPNN model with envi-
ronmental factors added. It could be seen that the fitting effect was good 
and the prediction of extreme value was also good. 

3.5. Selection of optimal model and spatial mapping of SOM content 

In this study, we calculated d-factor for various spectral calibration 
models and validation models, and carried out uncertainty analysis. The 

uncertainty analysis results of each model are shown in Table 7. 
Whether it was the original spectral band, the band after the first-order 
derivative processing, or the band after the second-order derivative 
processing, the average d − factor value of the BPNN model built with 
environmental factors was small. The d − factor values of the established 
calibration models were all around 1.0. The d − factor values of these 
models were much smaller than those of other estimation models. 
However, for the validation model, the d-factor of BPNN model pro-
cessed by SDR was greater than 2, which led to high uncertainty and 
instability of the model. The OR-BPNN model and FDR-BPNN model 
built by adding environmental factors had less uncertainty and higher 
model stability. The d − factor values of the calibration model were 0.991 
and 0.943, and the d − factor values of the validation model were 1.465 
and 1.539, respectively. 

According to the results of model error analysis and uncertainty 
analysis, the FDR-BPNN model with environmental factors had high 
fitting accuracy and stability, which could be used to estimate SOM 
content. Therefore, we used the FDR-BPNN model with environmental 
factors to estimate SOM content of the entire study area. The SOM 
content distribution map is shown in Fig. 8. It could be seen that SOM 
content in the study area was between 2.014 and 132.732 g⋅kg− 1. The 
SOM content in the middle and southwest of the study area was higher 
than that in other areas. 

Fig. 7. The fitting diagram of the predicted and measured SOM contents of the optimal model.  

Table 7 
Uncertainty measuring parameter of various models.  

Model Multispectral band Multispectral band added 
environmental data 

Calibration 
model 

Validation 
model 

Calibration 
model 

Validation 
model 

CR MLR 1.950 1.832 2.063 1.968 
PLSR 1.850 1.559 1.928 1.508 
GWR 1.912 1.952 1.745 1.779 
BPNN 2.046 1.538 0.991 1.465  

FDR MLR 1.939 1.809 2.058 1.968 
PLSR 1.817 1.440 1.657 1.687 
GWR 1.747 2.039 2.039 2.439 
BPNN 2.125 1.670 0.943 1.539  

SDR MLR 1.884 1.276 2.046 1.788 
PLSR 1.740 1.730 1.817 1.430 
GWR 1.794 2.620 2.354 3.692 
BPNN 2.026 1.146 1.037 2.269  
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4. Discussion 

In this study, derivative processing was performed on the band 
reflectance of Landsat 8 OLI images. Derivative processing was rarely 
used in Landsat images, but it was the most widely used method in SOM 
estimation of measured near-ground hyperspectral. A large number of 
studies had showed that the first-order derivative processing could 
smooth the influence of background interference as well as make the 
profile of spectral data clearer (Dai et al., 2014; Nawar et al., 2016; Yu 
et al., 2016). Our study showed the estimation ability of FDR was the 
strongest, while the estimation effect of SDR was not good and even 
smaller than OR. After derivative processing, the image changed obvi-
ously, and the image noise with the first derivative processing was 
reduced, which highlighted the hidden information of SOM in the 
image. However, the image processed by the second derivative could 
suppress the information of SOM and could not accurately estimate SOM 
content. Among these modeling methods, the BPNN model had the best 
estimation effect on the SOM content, could better explain the nonlinear 
relationship between variables. GWR model took the spatial heteroge-
neity into account. Therefore, GWR model could also meet the 
requirement of estimating SOM content. Among the 24 estimation 
models used in this study, FDR-BPNN model with environmental factors 
had the strongest estimation ability. 

The SOM content is affected by many environmental factors. Soil 
moisture content, soil temperature and NDVI are the main factors 
affecting the SOM content, and elevation and slope also significantly 
affect the distribution of SOM content. Lu et al. (2018) used DEM as an 
auxiliary variable combined with Landsat image to estimate the SOM 
content in a hickory plantation region, showing a good estimation effect. 
Jaber and Al-Qinna (2017) confirmed that soil moisture, temperature, 
and other variables could affect the accumulation of soil organic carbon 
when studying SOM estimation in the Zarqa Basin in Jordan. Wang et al. 
(2010) found that models with elevation, slope, and vegetation index 
would be more accurate when using hyperspectral images to map the 
SOM content of land degraded areas. In our study, we used topographic 
factors, hydrothermal factors, and vegetation factors to analyze and got 
the same results. As shown in Fig. 2, it could be seen that the central and 
southwestern parts of the study area had low elevation, small slopes, and 
high vegetation coverage. This was consistent with the distribution of 
areas with high contents of SOM. The above confirmed that environ-
mental factors had certain influence on the spatial distribution of SOM 
content, although this effect showed differences among different envi-
ronmental factors. 

The factors affecting the spatial distribution of SOM content are 
complex. In addition to environmental factors, other factors such as 
human factors and land use status should be also considered in the next 
research, so as to further improve the accuracy of remote sensing 

monitoring of SOM content. 

5. Conclusions 

In the field environment, the error of remote sensing image in the 
estimation of soil internal components is large due to the complex sur-
face properties. To address this defect, soil hydrothermal factors, terrain 
factors, and vegetation factors that are significantly related to SOM 
content were collected in the river valley of the southern QTP. We 
presented a methodology to improve the estimation of SOM content by 
using Landsat 8 OLI images combined with these environmental factors. 
The band reflectance of Landsat 8 OLI images was processed by first- 
derivative and second-derivative. The modeling methods of MLR, 
PLSR, GWR and BPNN were used, and 24 models were established with 
or without environmental factors. It was clear from the results that the 
accuracy of various models to estimate SOM content had been improved 
by adding environmental factors. The estimation effect of the FDR 
processing was the best, but the SDR processing was poor. Various BPNN 
models built by adding environmental factors had strong estimation 
ability. Among them, the FDR-BPNN model with environmental factors 
was the best estimation model, with R2 being 0.947, RMSEC being 4.701 
g⋅kg− 1 and MAEV being 5.485 g⋅kg− 1, and the stability of the model was 
high. These outcomes will provide a scientific reference for satellite 
remote sensing images combined with environmental factors to estimate 
SOM content, and is of great significance for precision agriculture and 
sustainable agricultural development in the QTP. 
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