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A B S T R A C T   

An important issue for ensuring a nation’s economic security involves evaluating the supply risk of its strategic 
mineral resources. Considering the impact of strategic emerging industries on the supply risk of China’s strategic 
minerals, this study establishes an indicator system for evaluating such risks. Specifically, using stochastic multi- 
criteria acceptability analysis for the ELimination Et Choix Traduisant la REalité TRI method, this study sys-
tematically evaluates the supply risk of 14 strategic metallic mineral resources in China from 2008 to 2017 and 
through 2025. The results indicate that: 1) From 2008 to 2017, the supply risk level of molybdenum and rare 
earth elements were low or low-to-medium, and those of 12 other minerals were high or medium-to-high; 2) For 
copper, gold, tungsten, molybdenum, antimony, and lithium, the supply risk level increased, and that for nickel 
decreased, while for iron, tin, chromium, and rare earth elements it irregularly fluctuated; and 3) The supply risk 
of chromium, molybdenum, lithium, and rare earth elements was influenced by potentially higher risk factors 
caused by poor substitutability and low recycling rate.   

1. Introduction 

Global population growth, technological changes, and economic 
development have resulted in increased demand for minerals, both in 
terms of quantity and type (Graedel and Reck, 2016; Nassar et al., 2020). 
Specifically, the transition to clean energy in response to global warm-
ing, particularly low-carbon technologies, has triggered a rapidly 
increasing demand for metallic minerals (Sovacool et al., 2020). For 
example, if the global temperature increases by 2 ◦C, it is expected that 
the demand for metallic minerals for electric vehicle power batteries (e. 
g. aluminum, cobalt, and iron) will increase more than tenfold (Arrobas 
et al., 2017). In addition, the new technology revolution has further 
increased countries’ concerns about the scarcity of metallic minerals 
(Wang et al., 2017). While demand for metallic minerals may continue 
to grow, the supply of these minerals is affected by unexpected in-
cidents. Labor strikes in South Africa affect the world’s supply of 
platinum-group metals (Yager et al., 2012), and the supply of cobalt is 
limited by conflicts in the Democratic Republic of the Congo (Hatayama 
and Tahara, 2017). Moreover, America’s tariffs on steel and aluminum 
imports also restrict the global supply of these metals (Galbraith, 2018). 
As a result, the gap between supply and demand of metallic minerals is 

widening. Therefore, to implement preventive measures and protect the 
development of countries from mineral supply disruption, an assessment 
of mineral supply risk is critical (Fan et al., 2018; Graedel et al., 2015; 
Jasiński et al., 2018). 

Studies on mineral supply risk assessment mainly consider the 
influencing factors of supply when setting an indicator system for 
comprehensive evaluation (Rosenau-Tornow et al., 2009; Schmid, 2019; 
van den Brink et al., 2020). Common indicators can be divided into four 
aspects: resources (e.g. reserves, depletion time, and import depen-
dence), market (e.g. demand growth, market concentration, and pro-
duction cost), technology (e.g. recyclability, substitutability, and 
companion fraction), and regulation (e.g. world governance index, 
environmental performance index, and trade barriers; Achzet and Hel-
big, 2013; Graedel et al., 2012; Jasiński et al., 2018). However, these 
common indicators for supply risk evaluation exclude economic 
importance indicators, which are generally used for assessing criticality 
(Helbig et al., 2016b). The supply of strategic metallic minerals is closely 
related to economic development; thus, separating economic impor-
tance from supply risk evaluation is in conflict with our common un-
derstanding that the supply risk of minerals is premised on its economic 
importance (Knobloch et al., 2018). As such, supply risk evaluation 
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needs to include economic importance indicators. At present, the in-
dicators of economic importance are mainly set at the national, indus-
trial (mega-sectoral), and corporate levels, reflecting the impact of 
minerals on national GDP (Blengini et al., 2017; Jie et al., 2013), value 
added of industries (mega sector; Blengini et al., 2017; Nassar et al., 
2020), and corporate revenues (Duclos et al., 2010; Griffin et al., 2019). 
Meanwhile, the promotion of strategic emerging industries has become 
an important scheme for major countries to forge a new round of eco-
nomic and technological development (SCC, 2010). However, the in-
dicators used in the above-mentioned studies exclude the impact of 
minerals on strategic emerging industries. Specifically, strategic 
emerging industries are industries that have a leading role in the overall 
economic and social development of a country, and they are based on 
major technological breakthroughs and development needs (MST, 
2011). These industries are different from traditional manufacturing 
industries (Nassar et al., 2020) and industrial mega-sectors (Blengini 
et al., 2017). Therefore, selecting indicators for strategic emerging in-
dustries is important for evaluating mineral supply risk. 

In addition, how to aggregate information from indicators is also a 
significant issue. Evaluating the supply risk for strategic minerals is a 
multidimensional endeavor that concerns resources, economic, tech-
nological, and international aspects. Thus, the multi-criteria decision 
analysis (MCDA) method is highly suitable for such a comprehensive 
analysis (Jasiński et al., 2018). MCDA methods for supply risk evalua-
tion primarily include a supply risk matrix and an index (Achzet and 
Helbig, 2013; Hatayama and Tahara, 2017), and the results are princi-
pally in the form of a matrix distribution (Glöser et al., 2015; Knobloch 
et al., 2018; USDE, 2010) and scores (Beylot and Villeneuve, 2015; 
Graedel et al., 2012; Zhou et al., 2019) of supply risk. However, the 
supply risk of minerals may change when affected by higher risk factors. 
Therefore, robustness of the current estimated supply risk is critical for 
identifying potentially higher risk factors. Clearly, this robustness 
cannot be obtained from the matrix distribution or scores of the supply 
risk of minerals. Furthermore, some indicators’ data and methods’ pa-
rameters are uncertain in the process of supply risk evaluation (Erdmann 
and Graedel, 2011; Glöser et al., 2015). For example, differences be-
tween technically possible recycling and real collection rates lead to 
inaccurate data (Achzet and Helbig, 2013). The supply risk matrix and 
index methods must be based on accurate data; they are not good at 
aggregating uncertain indicator data. To address these two problems, 
the stochastic multi-criteria acceptability analysis (SMAA-TRI) for the 
ELimination Et Choix Traduisant la REalité TRI (ELECTRE TRI) method, 
which extends the ELECTRE TRI method, is applied because it can not 
only deal with inaccurate data and uncertain parameters, but also 
visualize the robustness of the results of the ELECTRE TRI method 
(Merad et al., 2004; Tervonen et al., 2007; Yu, 1992). This method has 
been effectively applied for assessing nanomaterials, green chemistry, 
and mineral supply by Tervonen et al. (2009), Cinelli et al. (2017) and 
Jasiński et al. (2018). 

To accelerate the transformation of economic development and 
become a powerful manufacturing country, China proposed the ‘Made in 
China (2025)’ plan. This is an action plan for implementing the 
‘manufacturing power strategy’, which includes innovation, green 
development, and the integration of informatization and industrializa-
tion in manufacturing industries (SCC, 2015). Recently, driven by this 
strategy, the manufacturing industry has been developing rapidly in 
China, especially the strategic emerging industries such as the new en-
ergy, new materials, and high-end equipment manufacturing industries 
(SCC, 2015). The proportion of these strategic emerging industries’ 
value added to China’s GDP has increased from 4% in 2010 to 8% in 
2015 (Zhao, 2016), and it is anticipated to reach 15% in 2020 (SCC, 
2016). Considering this trend, strategic emerging industries have been 
recognized by NBSC (2018b). The development of these industries is 
based on huge demand for mineral resources (Zhou et al., 2015). In 
response to this demand, China listed 14 metallic minerals—iron (Fe), 
chromium (Cr), copper (Cu), aluminum (Al), gold (Au), nickel (Ni), 

tungsten (W), tin (Sn), molybdenum (Mo), antimony (Sb), cobalt (Co), 
lithium (Li), rare earth (REE), and zirconium (Zr)—as strategic minerals 
(MNRC, 2016). Strategic minerals are minerals that are essential for 
national economic security, defense security, and strategic emerging 
industries, including scarce minerals that rely massively on imports and 
dominant minerals that have abundant reserves and can regulate the 
international market (Chen, 2002; MNRC, 2016). As stimulated by the 
‘Made in China (2025)’ plan and by strategic emerging industries, the 
supply of strategic metallic minerals has become increasingly tight. 
Specifically, the demand and import dependence for scarce miner-
als—such as Fe, Cr, Cu, Al, Ni, Au, Co, Zr, and Li—are on the rise, which 
may lead to supply interruption (Liu et al., 2016; MES, 2018; Xu et al., 
2016). The consumptions of dominant minerals—such as W, Sn, Sb, Mo, 
and REE—are so large that the superiority quality of minerals has 
decreased (Chen et al., 2016). These strategic minerals are critical at a 
national level in China (Achzet and Helbig, 2013; MNRC, 2016), but the 
associated supply risk is unknown and requires investigation. As such, it 
is urgent to assess the supply risk of these minerals to ensure security and 
to pre-plan for the supply of strategic metallic minerals in China. 

Faced with this supply issue, scholars have carried out related 
research in China. Some studies have begun to add indicators of eco-
nomic importance for mineral supply evaluation in China. For example, 
Yang et al. (2016) adopted the ‘ratio of consumption to gross value of 
industrial output’ in their mineral security evaluation. Zhu (2018) used 
the concept of ‘economic contribution’ to measure the contribution of 
minerals to GDP. Recently, Wang et al. (2018a) and Zhou et al. (2019) 
noticed the connection between minerals and strategic emerging in-
dustries, and they assessed the supply risk of minerals in strategic 
emerging industries, such as new energy and new energy vehicle in-
dustries. However, there are no indicators that reflect the connection 
between the supply of strategic minerals and strategic emerging in-
dustries. Additionally, few studies have focused on certain minerals for 
evaluation based on researchers’ understanding of the importance of 
mineral resources and the demands of specific industries. For example, 
Liu et al. (2018) assessed the supply risk of Cr. Zhou et al. (2019) 
evaluated 12 minerals in the clean energy industry such as Sn, Co, and 
Cr. Wang et al. (2019a) assessed the supply security of 13 strategic 
metallic minerals. Nonetheless, these studies did not assess the supply 
risk of all the 14 metallic minerals included in China’s strategic minerals 
catalogue (i.e. China’s strategic metallic minerals). Furthermore, eval-
uating the supply risk of strategic metallic minerals means implementing 
preventive measures that can help the economy to develop sustainably 
in the future (Zhu, 2018). However, most of the above-mentioned 
studies only focused on the evaluation of the past and did not connect 
the assessments of the past with the future situation. 

Therefore, aside from common indicators, strategic importance in-
dicators are adopted here to measure the strategic emerging industries’ 
impacts on the supply of metallic minerals using a new indicator system. 
The SMAA-TRI method is used to evaluate 14 strategic metallic minerals 
and deal with imprecise data on recycling rate and uncertain parameters 
when applying ELECTRE TRI. The evaluation results are presented in 
terms of the supply risk probability for each mineral, which provides a 
more comprehensive view of these minerals’ supply status and helps in 
analyzing potential higher risk factors. Moreover, the criteria in SMAA- 
TRI, which is based on ELECTRE TRI, are non-compensatory and do not 
require trade-offs (Jasiński et al., 2018). For this method, the indicators’ 
data can be heterogeneous and do not require standardization (Tervo-
nen et al., 2007). Furthermore, this study connects the results of the 
supply risk evaluation of metallic minerals from 2008 to 2017 with the 
future supply situation to infer the supply risk of metallic minerals in 
2025, in reference to the literature on metal consumption and China’s 
economic development status. 

This study contributes as follows. First, the factors related to strategic 
emerging industries are considered in the new supply-risk-evaluation 
indicator system to evaluate China’s strategic metallic minerals quan-
titatively and qualitatively. Second, the SMAA-TRI method is adopted to 
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reflect comprehensively the supply risk (per type of mineral) of 14 
metallic minerals in China from 2008 to 2017. Third, this work identifies 
potential higher risks in the supply of certain minerals based on the 
possibility of each risk, and the causes of such risks are subsequently 
revealed. Lastly, the supply risk of China’s strategic metallic minerals in 
2025 is analyzed and discussed based on the results of the supply risk 
evaluation from 2008 to 2017. 

2. Evaluation indicator system for the supply risk of strategic 
metallic minerals 

2.1. The framework of indicators 

A country’s supply risk of strategic mineral resources is affected not 
only by domestically available minerals, but also by technology use, 
mineral import, and the correlation between the minerals and the 
economy. The availability of domestic minerals is the basic factor that 
affects mineral supply, while the correlation between minerals and the 
economy affects investments in mineral exploitation and supply 
disruption. The level of technology directly affects the efficiency of 
mineral mining and utilization. Importing minerals is one of the most 
important ways for a country to obtain minerals from the international 
market. Based on these four dimensions, eleven quantitative and qual-
itative indicators are selected to evaluate the supply risk of China’s 
strategic metallic minerals, considering the indicators’ applicability, 
relevance, data availability, and credibility (Achzet and Helbig, 2013; 
Jasiński et al., 2018), as shown in Fig. 1. Some other indicators such as 
press coverage, climate change vulnerability, and mine capacity utili-
zation have weak correlation to the present study, while the data are not 
available for other indicators such as by-product dependency, company 
concentration, and trade barriers. 

2.2. Description of the indicators 

2.2.1. Resource availability 
Resource availability reflects a country’s capability to maintain a 

steady supply of minerals. The improvement of this capability can 
reduce mineral supply risk. This dimension includes three sub- 
indicators: the proportion of China’s reserves to global reserves, the 

reserve-to-production ratio, and the import dependence. 
Specifically, the proportion of China’s reserves to global reserves 

reflects the state of China’s mineral reserves in the world (Zhang et al., 
2018). China’s strategic minerals include scarce minerals and dominant 
minerals, and this indicator can reflect whether China’s mineral reserves 
have worldwide priority. The reserve-to-production ratio measures the 
time that existing mineral reserves are available for production under 
the nation’s current mining capacity (Hatayama and Tahara, 2015). It 
can reflect the supply potential of domestic minerals without external 
supply (Zhang et al., 2018) and be a useful indicator for evaluating 
periodic availability of a resource (Schneider et al., 2014). Additionally, 
the import dependence reflects a country’s capability of providing 
minerals without imports (Achzet and Helbig, 2013). Higher import 
dependence can lead to greater uncertainty and higher risk from foreign 
markets, requiring countries to take additional measures when faced 
with such a situation. 

2.2.2. Economic correlation 
Economic correlation measures the impact of economic input on 

mineral supply risk, as well as the contribution of minerals to the 
economy. The increase of economic input can reduce the supply risk of 
minerals, and the consequences of supply disruption are related to the 
contribution of minerals to the economy. Three sub-indicators are 
included in this dimension: investments in exploration, consumption per 
unit of GDP, and strategic importance. 

More specifically, investment in exploration measures investments 
(from national finance, enterprises, and institutions) in exploration in-
dustries (Niu, 2007). It can help in improving exploration technology 
and in discovering more mineral reserves. The consumption per unit of 
GDP reflects the amount of minerals needed per unit of GDP growth 
(Zhang et al., 2018). Demand for minerals is derived from countries’ 
economic development. The indicator connects demand and economic 
growth to measure the consumption intensity of minerals. Moreover, 
strategic importance—specific to China and different from the indus-
try’s value added to GDP (Nassar et al., 2020)—reflects the contribution 
of minerals to GDP in strategic emerging industries. The MNRC (2016) 
and NBSC (2018b) have recognized China’s strategic minerals and 
strategic emerging industries as part of China’s development strategy. 
This indicator represents the minerals’ strategic importance to China’s 
economy. 

2.2.3. Technological level 
Technological level reflects the function of mineral mining and 

technology use on easing supply pressure. Improvements in technology 
can reduce supply risk. Two of its sub-indicators are recycling rate and 
substitutability. 

Recycling rate is the proportion of secondary metal to total supply, 
and reflects the impact of scrap consumption on mineral supply pressure 
(Graedel et al., 2011). Metal scrap is also an important supply source, as 
recycling can compensate for a portion of the primary supply (Zhou 
et al., 2019). Substitutability refers to the feasibility of a mineral to be 
replaced without increasing cost and decreasing product performance 
(Hollins and Faunhofer, 2014). Metal substitution can shift some de-
mand of a metal mineral to another; thus, it can also relieve supply 
pressure (Helbig et al., 2016a). Therefore, these two indicators are 
important for evaluating metallic mineral supply risk. 

2.2.4. Import instability 
Import instability measures the risks caused by foreign markets such 

as the source countries’ politics and export policy. This dimension in-
cludes three sub-indicators: foreign market concentration, geopolitical 
risk, and environmental risks from source countries. 

Foreign market concentration is calculated based on data from pro-
ducing countries. It measures the risk from market monopoly in foreign 
mineral markets (Achzet and Helbig, 2013). This means that if mineral 
production is concentrated in a few countries, the mineral supply can be Fig. 1. The supply risk evaluation indicators for strategic metallic minerals.  
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easily disrupted by the political stability and environmental perfor-
mance of these counties (Brown, 2018; Zhou et al., 2019). Therefore, 
this study selects geopolitical risk and environmental risk for measuring 
the import instability of metallic mineral resources. 

Geopolitical risk reflects the risk of importing minerals from source 
countries with poor political governance (Graedel et al., 2012). Political 
risk may affect a mineral’s supply if a country imports from producing 
countries that have poor governance (EC, 2014; Kaufmann et al., 2011). 
Environmental risk measures the risk from source countries that suffer 
from environmental pollution or damage (Wendling et al., 2018). 
Compared with countries that have high environmental standards, 
source countries with low environmental standards may have higher 
accident risk, thereby disrupting mineral supply (Jasiński et al., 2018). 

Table 1 presents the calculations of indicator data. 

3. Evaluation methods to determine the supply risk of strategic 
metallic minerals 

3.1. The stochastic multi-criteria acceptability analysis -TRI method 

The SMAA-TRI method, which is based on the ELECTRE TRI method, 
assigns a set of alternatives to pre-defined classes based on a series of 
criteria according to a fuzzy outranking relationship (Yu, 1992). This 
relationship is determined by alternatives and profiles, and the final 
class is obtained by the weighted sum of the results based on all criteria 
(Merad et al., 2004). In this study, the SMAA-TRI method is adopted to 
evaluate the supply risk of strategic metallic minerals. This method di-
vides the supply risk into four risk classes: low, low-to-medium, medi-
um-to-high, and high risk. It uses the class acceptability index to display 
the overall supply condition of minerals by demonstrating the proba-
bility of each supply risk class, and takes the class with maximum 
probability as the supply risk class of a mineral (Tervonen et al., 2007). 
The key parameters are as follows. The weights of indicators (w) denote 
the importance coefficients and represent the indicators’ voting power. 
The higher the weight is, the more important the indicator is. Class 
profiles (Ph) are the upper bound of class h and the lower bound of class 

h+ 1. The indifference thresholds (q) of an indicator define the greatest 
difference at which an alternative is considered indifferent to a profile. 
The preference thresholds (p) of an indicator define the smallest dif-
ference at which an alternative is preferred to a profile. The cutting level 
(λ) describes the minimum cumulative weight of indicators that supports 
the next class. Fig. 2 briefly illustrates the analytical process. 

First, the indicator data are entered, and the thresholds and param-
eters in the SMAA-TRI method are determined. Some indicators (γ) 
whose values are difficult to obtain are set with a value range. Table 3 
and Table 4 describes the parameter settings, such as w,Ph,q,p, and λ. 

Second, the class membership function (mh
l (γ,λ,T)) is determined. This 

is a process of executing ELECTRE TRI to determine whether a mineral 
can be essentially assigned to a class. The random values for inaccurate 
data (γ) and λ are taken from their ranges to execute the ELECTRE TRI 
method by Monte Carlo simulation, together with the deterministic data 
(s) and parameters T = {s,w,Ph,p,q}. Subsequently, the class member-
ship function of l mineral on h class can be obtained. 

Third, the class acceptability index (πh
l ) can be obtained by inte-

grating the product of the class membership function and the probability 
density function of inaccurate data, (fR(γ)) and (fL(λ)), respectively. The 
class acceptability index is within the range [0, 1] and represents the 
probability that a mineral can be assigned to a risk class. 

Finally, the class with the maximum acceptability index is regarded 
as the supply risk of a mineral because the class acceptability index can 
be construed as the probability that a mineral can be assigned to a class. 

3.2. Weighting method for the indicators 

The weights of indicators play a decisive role in evaluating the 
supply risk of strategic metallic minerals. To obtain scientific weights, 
this study adopts a combination of subjective and objective weighting. 

The SMAA TRI is a non-compensatory MCDA method (Galo et al., 
2018; Tervonen et al., 2007), such that the weighting method cannot 
allow trade-offs between indicators. Figueira and Roy (2002) improved 
upon Simos (1990)’s procedure to determine the indicators’ weights in 

Table 1 
Calculation and attributes of indicators for evaluating the supply risk of strategic metallic minerals.  

Dimensions Indicators Calculations Attributes 

Resource 
availability 

Proportion of China’s reserves to 
global reserves 

Mineral reserves in China/Mineral reserves in the world - 

Reserve-to-production ratio Mineral reserves/Mineral production - 
Import dependence Mineral net imports/Mineral apparent consumption (net imports = imports - exports; apparent 

consumption = production + net imports) 
+

Economic 
correlation 

Investment in exploration National financial allocation + Local financial allocation + Domestic enterprise funds + Investment from 
Hong Kong, Macao and Taiwan + Foreign investment + Other investment 

- 

Consumption per unit of GDP Mineral apparent consumption/GDP +

Strategic importance Value added of strategic emerging industries related to a mineral a/GDP +

Technological 
level 

Recycling rate Tonnage of secondary metal/Tonnage of total supply of a metal - 
Substitutability Measured by substitutability index from European Commission’s report regardless of the slight discrepancy +

Import instability Foreign market concentration It is acquired by summing the square of the shares of producers’ production to the world except the 
importing country. 
HHI(ϕ) =

∑MP
i=1ϕ2

i , where MP is the number of mineral-producing countries except the importing country, 
and ϕi is the proportion of a country’s mineral production to the world.  

+

Geopolitical risk b Measured by the estimate of "Political Stability and Absence of Violence/Terrorism" (PV) in Worldwide 
Governance Indicators. 
RP =

∑ME
j=1(gi ⋅ηi) , where ME is the number of source country, gi is the WGI-PV of j country, and ηi is the 

proportion of the imports from j country to the total imports of China.  

+

Environmental risk b Measured by the Environmental Performance Index (EPI) of Yale University research. 
Re =

∑ME
j=1(ej ⋅ηj) , where ej is the EPI of country j.  

+

Notes: 
a Value added of strategic emerging industries related to minerals is an estimated value. The value added of sectors in strategic emerging industries is calculated 

according to Strategic Emerging Industry Classification (2018), National Economic Industry Classification (2017), and 2012 Input-Output Table from National Bureau 
of Statistic of China (NBSC, 2017, 2018b). The details of calculation can be found in the Supplementary data. 

b When the value of import dependence is negative, the mineral supply does not rely on imports and is not affected by geopolitical and environmental risks from 
source countries. Therefore, in this case, the values of the geopolitical risk and environmental risk from source countries are adjusted to 2.5 and 100 respectively from 
2008 to 2017 (The maximum values of WGI and EPI are 2.5 and 100 respectively, indicating the most stable politics and the best environmental performance.). 
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ELECTRE-type methods. The improved procedure considers the impor-
tance difference between the first and the last rank and revises the 
determination of the importance distance between two adjoining ranks 
(Figueira and Roy, 2002). The weights of the improved Simos’ proced-
ure are based on the ordinal indicators’ scores and originate from 
non-compensatory procedures. Thus, this method does not include 
trade-offs and can give weights the meaning of importance coefficients 
(Munda, 2012). The improved Simos’ procedure for ELECTRE-type 
methods has been successfully applied to many cases, such as mining 
area management (ELECTRE TRI; Merad et al., 2004), material selection 
(ELECTRE III; Shanian et al., 2008), and logistics management (ELEC-
TRE I; Govindan et al., 2019). However, the improved Simos’ procedure 
is a subjective weighting method and is based on decision makers’ 
ranking information, which may lead to arbitrariness of weights and 
neglect the objectivity of data. Therefore, it is necessary to use an 
objective weighting method to correct the arbitrariness and make up for 
this shortcoming. 

Shannon (1948)’s entropy weight method is one of the most effective 
methods for obtaining objective weights when evaluating water quality 
(Zou et al., 2006), customer satisfaction (Li et al., 2014), and environ-
mental conflict (Delgado and Romero, 2016). The method determines 
the weights of indicators according to the influence of the indicators’ 
disorder degree on the whole system. When differences among the 
values of all objects on the same indicator are big, this indicator is 
considered to contain much information, and its information entropy is 
considered small; thus, the indicator should be assigned a high weight 
(Zou et al., 2006). The indicators’ data differ among strategic metallic 
minerals during the study period; therefore, the entropy weight method 
can effectively acquire objective information from data to eliminate the 
influence of subjective factors on the weights. 

Therefore, this study combines the improved Simos’ procedure and 
the entropy weight method by integrating the weights’ ‘order’ and ‘in-
tensity’ information (Li et al., 2017). The ‘order’ information refers to 
the weight’s ranking according to its relative importance in the supply 
risk assessment system. The ‘intensity’ information denotes the numer-
ical difference in the weights’ values. This method decomposes the in-
formation of each weight into order and intensity information, and 
recombines the information based on the principle of giving priority to 
the order information of subjective weights and the intensity 

information of objective weights. The order information of subjective 
weights enables the combination weights to include background infor-
mation from experts in mineral supply, while the intensity information 
of objective weights enables the combination weights to reflect the in-
formation brought by objective indicator data. This method combines 
the advantages of subjective weight and objective weight, which is in 
line with the purpose of subjective and objective combination weight-
ing. By decomposing and reorganizing the weight information, the 
interpretability and rationality of each step in the process of combining 
weights are enhanced (Li et al., 2017; Yu et al., 2019). Such a combi-
nation not only considers the background of supply risk assessment and 
indicator data, but also results in a more scientific indicator weight by 
avoiding the deficiencies of subjective and objective weighting methods 
(Zhao et al., 2016). Fig. 3 briefly describes the weighting process. 

The improved Simos’ procedure for subjective weighting can be 
summarized in the following steps: 

Step 1: Collect ordinal information from experts in mineral supply. 
We consulted eleven experts in mineral resources research and de-
cision makers in government departments (see Supplementary data). 
The indicator cards are ranked by these experts in an ascending order 
of the indicators’ importance. If the experts think some indicators are 
equally important, they can put these indicators in the same rank. 
The importance distance between any two adjoining ranks is sup-
posed to be ε. When this distance is more than ε, blank cards are 
necessary to adjust the distance. Inserting η blank cards means that 
the importance of the indicators at the latter rank is (η+1)ε more 
than that of the indicators at the former rank. 
Step 2: Calculate the ratio z of the most important indicator to the 
least important one in the ranking. 

z=

(
∑c− 1

t=0
(F − t)

)

d
(
∑d− 1

t=0
(1 + t)

)

c
(1)  

where F is the total number of cards, including blank cards; d is the 
number of indicators at the first rank; and c is the number of indicators at 
the last rank. 

Fig. 2. The SMAA-TRI methodological procedure for evaluating supply risk.  
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Step 3: Compute the non-normalized weights of each rank, w′

r. In-
dicators at the same rank have the same non-normalized weight. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

br = b′

r + 1,

b =
∑R− 1

r=1
br,

ε =
z − 1

b
,

w′

r = 1 + ε(b0 + ...+ br− 1). (2)  

where r is the rank of an indicator excluding blank cards and r = 1,2,...,
R − 1, br

′

is the number of blank cards between rank r and r+ 1, b0 = 0. 

Step 4: Normalize the weights of the v-th indicator, wv. The non- 
normalized weight of the v-th indicator can be obtained from w′

r 
according to the rank of the v-th indicator. 

wv =
w′

v
∑v=V

v=0
w′

v

(3)  

where V is the total number of indicators, and the sum of wv is 1. Ac-
cording to Shanian et al. (2008), this study retains four decimals, and the 
sum of the indicators’ weights is 1; thus, rounding off the weight is 
unnecessary. Moreover, the weights from eleven experts are aggregated 
by arithmetic average (Zhao, 2017). 

In addition, the entropy weight method for objective weighting can 
be summarized in the following three steps. 

Step 1: Normalize the data of indicators according to the correlation 
between the indicator and the research objective. 

yαβ =
xαβ − min(xα)

max(xα) − min(xα)
(4)  

yαβ =
max(xα) − xαβ

max(xα) − min(xα)
(5)   

Step 2: Determine the information entropy of the α-th indicator. 

Eα = −
1

ln n
∑n

β=1
pαβ(ln pαβ), α = 1, 2, ...,m; β = 1, 2, ..., n (6)  

where ραβ = yαβ/
∑n

β=1yαβ, whenραβ = 0; lim
ραβ→0

ραβ ln ραβ = 0. 

Step 3: Compute the weight of the α-th indicator. 

w*
α =

1 − Eα
∑m

α=1
(1 − Eα)

(7) 

Finally, the combination of subjective and objective weights is 
implemented through the following optimization model, as shown in 
Fig. 4. 

Specifically, the objective function helps get the objective weights’ 
intensity information by minimizing the difference between combined 
and objective weights. Further, wv and w*

v denote the combined and 
objective weights of the v-th indicator, respectively. Vis the total number 
of indicators. 

The bounds constraint takes the intersection of the subjective and 
objective weights’ neighborhoods as the range of the combined weights’ 
value, where ubv and lbv are the maximum and minimum values of the 
v-th indicator, respectively. This study takes the absolute value of the 
difference between the subjective and objective weights as the neigh-
borhood. In short, the larger one between the subjective and objective 
weight of an indicator is regarded as the upper bound and the smaller 
one as the lower bound. 

The basic constraint ensures that the sum of the combined weights is 
1. 

The order constraint can help obtain subjective weights’ order in-
formation by guaranteeing the combined weights’ ranking in accor-
dance with the subjective weights, where u < v is the subjective weight’s 
ranking, u and v are the rankings of the bigger and smaller weights, 
respectively. 

4. Data and parameters 

4.1. Data sources 

Data on the reserves and production of other minerals mainly come 
from Mineral Commodity Summaries (2009–2018), but Cr’s and Al’s re-
serves data are from China Mineral Resources (2011–2018) and Global 
Mineral Resources Information Platform (DRC, 2019), respectively, 
while Cr’s production data come from China Land and Resources Statis-
tical Yearbook (2009–2018). Import and export data are from the UN 
Comtrade Database and China Land and Resources Statistical Yearbook 
(2009–2018). Data on investments in exploration are from China Land 
and Resources Statistical Yearbook (2009–2018). The Worldwide Gover-
nance Indicators and Environmental Performance Index are published 
by the Word Bank (WB, 2018) and Yale University (Wendling et al., 
2018), respectively. GDP and industry value added data for estimating 
strategic importance are from China’s National Bureau of Statistics, as 
sourced from NBSC (2017, 2018b). The substitutability index is from the 

Fig. 3. The combination of subjective and objective weighting.  
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European Commission (EC, 2010; 2014, and 2017). The range of recy-
cling rates is from the United Nations Environment Programme (Graedel 
et al., 2011), Asian Metal (AM, 2019), and other literature (Li et al., 
2019; Pan et al., 2018; Zhu, 2018). Specifically, Au’s import, export, and 
recycling data are from Report on Gold Resources 2016 of China 
Geological Survey (Lin et al., 2016). Details are provided in Supple-
mentary data. 

4.2. Weights 

The subjective and objective weights are acquired based on the 
improved Simos’ procedure and entropy weight methods, respectively. 
The combined weights are obtained based on the optimization model 
according to their order and intensity information. 

For example, in the subjective weighting, the ranks provided by the 
first expert are converted to weights, as shown in Table 2. “*” denotes 
the blank card. The ranks of indicators are shown in the second column. 
The ratio z = 14 is obtained by applying Eq. (1). The non-normalized 
weights, w′

r, are computed using Eq. (2), and b = 12, ε = 13
12. Eq. (3) 

helps in calculating the normalized weights, wv. 
In the objective weighting, the import dependence can be taken as an 

example. Its data are normalized by applying Eq. (4), and information 
entropy, EC13 = 0.9862, is computed using Eq. (6). Eq. (7) can be used to 
obtain objective weight, w*

C13 = 0.0183. 
Finally, combined weights are computed using the optimization 

model. For example, in the objective function, the difference between 
combined and objective weights of import dependence can be inter-
preted as (wC13 − 0.0183)2. In the bounds constraint, the subjective 
weight of import dependence is 0.1743, and the objective weight is 
0.0183. The value range of this indicator’s combined weight can be set 
to [0.0183,0.1743]. In the basic constraint, the sum of these eleven in-
dicators’ weights is 1. In the order constraint, eleven indicators are 
ranked according to their subjective weights as C13, C42, C22, C21, C12, 
C23, C41, C43, C11, C31, and C32. Therefore, the constraint can be set 
to wC13 ≥ wC42 

≥ wC22 ≥ wC21 ≥ wC12 ≥ wC23 ≥ wC41 ≥ wC43 ≥ wC11 ≥ wC31 ≥ wC32 

. 
The subjective, objective and combined weights are noted in Table 3. 

The Supplementary data displays the ranking from experts using the 
improved Simos’ procedure and notes the values of entropy in the en-
tropy weight method. 

4.3. The profiles of the classes and indicator thresholds 

The profiles of the classes and indicator thresholds are set according 
to the indicator data and existing literature. Further, the indicator data 
are allocated to four classes—low (L), low-to-medium (LM), medium-to- 

high (MH), and high (H) risk—as illustrated in Table 4. The indifference 
(q) and preference thresholds (p) measure the profiles’ uncertainty. The 
relationship of q and p is set according to Jasiński et al. (2018), and p =

2× q. 

5. Results and analysis 

5.1. Overall supply risk level 

The class acceptability index of the supply risk from 2008 to 2017 is 
obtained based on Section 3, as illustrated in Fig. 5 (Detailed indices are 
shown in Supplementary data). The index represents the probability that 
the supply risk is assigned to a certain class. The acceptability index for 
each supply risk class ranges between 0% and 100%. The sum of each 
mineral’s acceptability is 100% in all four classes. 

Cr, Cu, Co, and Zr are exposed to high supply risk. Cr, Cu, Co, and Zr 
reserves are scarce, and their supply primarily depends on imports. Each 
of the four minerals accounts for less than 4% of the global reserves, and 
their import dependence is more than 85% (MNRC, 2018; USGS, 2019). 
Specifically, the proportion of China’s Co reserves to global reserves is 
only 1%, with import dependence of more than 97%. Additionally, the 
demand for Cr, Cu, and Zr has increased sharply in recent years due to 
the vigorous development of strategic emerging industries in China, 
such as the high-end equipment manufacturing, new energy vehicle, and 
electronic equipment and component industries. For example, the con-
sumption of Zr has increased from 0.65 million tons in 2008 to 1.11 
million tons in 2017 (MLRC, 2009; MNRC, 2018). As a result, the gap 
between supply and demand for these three minerals has intensified. 
Furthermore, Co’s foreign supply is affected by the source countries’ 
political stability and environmental performance. The foreign market 
concentration of Co is more than 38% (MNRC, 2018), which implies that 
China’s Co import is concentrated in a few countries. Its foreign supply is 
also affected by the producing countries’ political instability and low 

Fig. 4. Optimization model of combined weights.  

Table 2 
Converting the ranks into weights.  

Rank 
r  

Indicators in the 
rank r  

br  Non-normalized 
weights w′

r  

Normalized 
weights wv  

1 C31 1 1 0.0146 
2 C11 C32 1 2.08 0.0305 
3 C42 1 3.17 0.0463 
4 C41 1 4.25 0.0621 
5 C23 1 5.33 0.0780 
6 C12 1 6.42 0.0938 
7 C21* 2 7.50 0.1096 
8 C22** 3 9.67 0.1413 
9 C23 1 12.92 0.1888 
10 C13 – 14.00 0.2046  
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environmental performance. The geopolitical and environmental risks 
are -2.28 and 42.27, respectively (WB, 2018; Wendling et al., 2018). 

Eight minerals are exposed to medium-to-high risk, namely, Fe, Al, 
Au, Ni, W, Sn, Sb, and Li. China is the largest consumer of Fe, and its 
consumption of Fe has always been large (Zhu, 2018). However, China’s 
Fe reserves were about 21 billion tons in 2016 and have not increased 
dramatically in the past (USGS, 2019). Considering China’s extensive 
use of Fe, its economy will be seriously affected once the supply of Fe is 
disrupted. Furthermore, the applications of Al in electrical appliances, 
heat dissipation materials, and aviation also make China’s consumption 
of Al large. Domestic reserves can meet the demand for Al for about 30 
years, while import dependence for Al has reached as high as 60% in 
recent years (MNRC, 2018; USGS, 2019). Although Au is the least 
consumed mineral among these 14 metallic minerals, it cannot satisfy 
China’s demand, with the proportion of its Au reserves to global reserves 
at less than 4% and its import dependence at more than 60% (Lin et al., 
2016). The supply of Ni is influenced by its source countries. The import 
dependence for Ni has increased to 99% (MNRC, 2018). Further, the 
Philippines as a primary source country for Ni has a worldwide gover-
nance indicator, which denotes political stability and the absence of 
violence or terrorism (WGI-PV), valued at approximately -1 (WB, 2018). 
Thus, the Philippines’ turbulent political situation is likely to lead to a 
supply interruption. Meanwhile, China has a large reserve of Li, at 
approximately 20% of the global reserves (USGS, 2019), but it cannot 
supply Li with its low-grade and backward mining technology (AM, 
2020). Hence, import dependence for Li has reached as high as 60% 
(MNRC, 2018). In addition, W, Sn, and Sb have been dominant minerals 
in China because of their large reserves in the past. However, with heavy 
mining each year, the three minerals may face resource depletion or 
dependence on import in the future. According to the 
reserve-to-production ratio, the depletion time for W, Sn, and Sb are 
about 27, 12, and 5 years, respectively (USGS, 2019). Meanwhile, 
import dependence for Sn and Sb has increased to 80% and 40%, 
respectively (MNRC, 2018; USGS, 2019). 

Mo is mainly exposed to low-to-medium supply risk. The supply of 
Mo is better than those of minerals that are at high or medium-to-high 
risk level. Mo is one of the dominant minerals of China, and its supply 
depends on domestic reserves. The reserves of Mo can satisfy China’s 
demand for about 64 years (USGS, 2019). 

Meanwhile, REE’s supply risk level is low. Compared with other 
mineral resources, REE are plentiful in China. Its reserves and produc-
tion rank first worldwide. Therefore, domestic supply can meet the de-
mand. Import dependence for REE is negative, which indicates net 
exports, and its supply is less affected by the international market 
(MNRC, 2018; USGS, 2019). 

5.2. Changes in supply risk class 

Fig. 6 illustrates the changes in the supply risk class of strategic 
metallic minerals from 2008 to 2017. 

The supply risk of Cu, W, Au, and Li increased during the ten-year 

study period. Rising demand for Cu has pushed its supply risk level 
from medium-to-high to high. Cu is widely used in traditional industries 
such as power, metallurgy, and transportation, and it also plays an 
important role in emerging industries such as new information tech-
nology and new materials. This has led to a gradual increase in the 
mined amount of Cu. Cu’s depletion time decreased from 31 years to 15 
years, and the import dependence for Cu increased from 85% to 91% 
(USGS, 2010, 2019). Poor substitutability and decline in the source 
countries’ environmental performance has changed W’s supply risk 
level from low-to-medium to medium-to-high. Furthermore, countries 
with low environmental standards can face the risk of supply disruptions 
more easily than those with higher environmental standards (Jasiński 
et al., 2018), while improving environmental performance can effec-
tively reduce the possibility of supply interruptions caused by environ-
mental damage. The environmental performance index (EPI) of 
Russia—a major exporters of W to China—decreased from 83.8 to 53.4 
(Wendling et al., 2018). The substitutability index of W also changed to 
0.9, which has increased the substitution cost of W in alloy and elec-
tronic industries (EC, 2017). Increased demand for Au and Li in China 
has raised their supply risk level from low-to-medium to 
medium-to-high. Aside from its monetary functions and jewelry appli-
cations, Au is widely used in electronics and aerospace industries, which 
has increased import dependence for Au from 15% in 2008 to 67% in 
2017 (Lin et al., 2016). Li’s consumption has increased in strategic 
emerging industries such as the new energy, new materials, and 
high-end equipment manufacturing industries. Meanwhile, because of 
low grade and mineral mining limitations, Li, which previously had net 
exports, has become 60% import dependent (AM, 2020; MLRC, 2013). 

Ni’s supply risk decreased from 2008 to 2017. The supply risk level 
of Ni has dropped from high to medium-to-high. Large increases in Ni’s 
reserves and reduced demand have mitigated its supply risk. Ni’s re-
serves rose from 1.1 million tons in 2008 to 2.9 million tons in 2017 
(USGS, 2010, 2019). Simultaneously, the consumption intensity and 
total consumption of Ni have shown a decreasing trend since 2013. The 
consumption per unit of GDP for Ni fell from 120 tons to 46 tons in 2017, 
while total consumption fell from 71.39 million tons to 35.13 million 
tons in 2017 (MLRC, 2013; NBSC, 2018a). 

The supply risk of Al, Co, Zr, and Sb did not change significantly 
between 2008 and 2017. China’s total consumptions of Al, Co, and Zr 
are on the rise as the economy continues to grow. However, increasing 
exploration investments have raised these minerals’ reserves and sup-
plies (MNRC, 2018; USGS, 2019). Therefore, no obvious changes have 
appeared in the import dependence and consumption intensity for these 
minerals (MNRC, 2018). Meanwhile, the international market for these 
minerals has been stable. As a result, the supply risk of Al, Co, and Zr has 
not change significantly. Sb reserves have decreased between 2008 and 
2017, but this change was basically consistent with the change in its 
consumption during this period (MNRC, 2018; USGS, 2019). Hence, its 
supply risk also did not change significantly. 

Changes in demand have led to irregular fluctuations in the supply 
risk of Fe, Cr, Sn, Mo, and REE. Moreover, the demand for Fe, Sn, and 

Table 3 
Weights of indicators for evaluating the supply risk of strategic metallic minerals.  

Indicators Subjective weights Objective weights Combined weights 

Proportion of China’s reserves to global reserves 0.0542 0.0321 0.0542 
Reserve-to-production ratio 0.0923 0.0069 0.0833 
Import dependence 0.1743 0.0183 0.1624 
Investment in exploration 0.0968 0.0170 0.0833 
Consumption per unit of GDP 0.1339 0.6354 0.1624 
Strategic importance 0.0878 0.0301 0.0833 
Recycling rate 0.0317 0.0256 0.0317 
Substitutability 0.0313 0.0373 0.0317 
Foreign market concentration 0.0731 0.1201 0.0833 
Geopolitical risk 0.1624 0.0359 0.1624 
Environmental risk 0.0622 0.0413 0.0622  
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REE can change sporadically as a result of the influence of national 
policies or corporate decisions, which affect the supply risk. For 
example, Fe consumption per 100 million yuan reached about 3800 tons 
between 2011 and 2014, but it fell to 1927 tons in 2015 (MLRC, 2016; 

NBSC, 2018a). This made Fe’s supply risk high in 2011–2014 and 
medium-to-high in other years. Changes in EPI values have led to fluc-
tuations in the supply risk of Cr and Mo. For example, the EPI values in 
South Africa, a major source of Cr, fell to 34.6 in 2012 and rose to 70.5 in 

Table 4 
The profiles of the classes and indicator thresholds for evaluating the supply risk of strategic metallic minerals.  

Indicators Classes’ Profiles q p Basis for Parameters 

L LM MH H 

Proportion of China’s 
reserves to global 
reserves 

>0.25 0.15–0.25 0.05–0.15 <0.05 0.025 0.05 As this paper’s profiles are 0.05 bigger than those in Yang 
et al. (2016), the profiles’ uncertain value is 0.05. 

Reserve-to-production 
ratio 

>75 50–75 25–50 <25 2.5 5 On the basis of studies by Hatayama and Tahara (2015),  
Schneider et al. (2014) and Liu et al. (2018), the difference 
among these studies’ profiles is 5. 

Import dependence <0.25 0.25–0.5 0.5–0.75 >0.75 0.025 0.05 The values of import dependence range between zero and 
one, and four equal points of this interval are used as 
profiles. However, the difference is approximately 0.05, 
compared to results from Zhu (2018) and Liu et al. (2018). 

Investment in 
exploration 

>60119.92 15910.25–60119.92 4558.48–15910.25 <4558.48 – – The exploration investments substantially vary for each 
mineral. Thus, an ascending numerical sort of the value of 
investment from 2008 to 2017 is used, and the quartiles 
are used as profiles. 

Consumption per unit 
of GDP 

<50 50–100 100–150 >150 – – The indicator values are mostly between 0 and 200, and 
four equal points of this interval are used as profiles. 

Strategic importance <0.025 0.025–0.05 0.05–0.075 >0.075 – – The indicator values are mostly between 0 and 0.1, and 
four equal points of this interval are used as profiles. 

Recycling rate >0.5 0.25–0.5 0.1–0.25 <0.1 0.025 0.05 According to research by UNEP (Graedel et al., 2011), and 
compared to Yang et al. (2016) and Liu et al. (2018), the 
difference is 0.05. 

Substitutability <0.25 0.25–0.5 0.5–0.75 >0.75 – – The indicator values are mostly between 0 and 1, and four 
equal points of this interval are used as profiles (EC, 2014). 

Foreign market 
concentration 

<0.15 0.15–0.2 0.2–0.25 >0.25 0.025 0.05 The profiles are moderately restrictive, representing a 
compromise between the EU and US Merger Guidelines ( 
Brown, 2018).  
The difference is approximately 0.05. 

Geopolitical risk >1 0–1 -1–0 <-1 0.1 0.2 They are set according to Jasiński et al. (2018) and the 
average standard error of the WGI-PV value from the 
World Bank. The average standard error is 0.2 (Kaufmann 
et al., 2011). 

Environmental risk >79 69.5–79 57.5–69.5 <57.5 4.3 8.6 This is set according to Jasiński et al. (2018), and the 
average change across 180 countries is 8.6 (Wendling 
et al., 2018). 

λ∈[0.65–0.85] This is according to literature related to the SMAA-TRI 
method (Merad et al., 2004; Tervonen et al., 2009).  

Fig. 5. Class acceptability index for the supply risk of strategic metallic minerals (2008–2017).  
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2016 (Wendling et al., 2018). 

5.3. Potential supply risk identification 

The supply risk’s class acceptability index can indicate potential risks 
in the current supply status. This index also represents the probability 
that a mineral is assigned to a specific class. Compared with the 
acceptability index of the current risk class, when a mineral’s higher risk 
class reaches a specific value (e.g. the probability of the higher risk class 
reaches 30%), this mineral will have a potential risk. The potential risk 
indicates that some factors are increasing this mineral’s supply risk. 

Six minerals—Cr, Ni, W, Mo, Li, and REE—have demonstrated 
different potential risks under their current supply status. For example, 
Fig. 5 illustrates Cr’s class acceptability index for the medium-to-high 
risk class in 2014 at 56.37%, while that of the high-risk class is at 
43.61%. This indicates that the supply risk for Cr is driven by some 
factors that change its supply risk level from medium-to-high to high; in 
other words, a potential risk exists. The poor substitutability and low 
recycling rates of Cr, Ni, W, Mo, Li, and REE are responsible for these 
elements’ potential risks in different years. Substitution and recycling of 
minerals can mitigate supply risk without a significant increase in their 
reserves. However, the substitutability indices of these minerals are 
above 0.6, especially for Cr and Mo, whose substitutability indices in 
2017 are greater than 0.9 (EC, 2017). This indicates that the substitution 
of these minerals will either require a high cost or lead to a degradation 
of product performance (Hollins and Faunhofer, 2014). Moreover, the 
recycling of Li and REE accounts for only 1% of their total supply and 
cannot effectively mitigate their supply risk (Graedel et al., 2011; 
Jasiński et al., 2018). 

The supply risk level of the other minerals is either high or a higher 
risk status for them is less probable; thus, they exhibit relatively stable 
supply risk. 

6. Analysis of the supply risk of strategic metallic minerals in 
2025 

The ‘Made in China (2025)’ plan is one of the main driving factors of 
the current demand for strategic metallic minerals. Based on the results 
of the supply risk assessment from 2008 to 2017, this paper discusses 
changes in the supply risk trend of strategic metallic minerals in China 
from 2018 to 2025. 

With large demand, China’s strategic metallic minerals are expected 
to be in short supply for a long period (Li et al., 2019). Moreover, as the 
global economy transforms, mineral imports will continue to be affected 
by geopolitical risks and the policy and environmental issues of the 
producing countries (SCC, 2017). Additionally, overseas investment and 
cooperation in mineral exploration cannot alleviate the supply pressure 
effectively due to low economic efficiency (MIIT, 2016b). As a result, 
China’s foreign supply of metallic minerals cannot increase sharply in a 
short time. Each country’s supply of minerals is from both home and 
abroad. Therefore, the following supply risk analysis of strategic 
metallic minerals based on the evaluation results from 2008 to 2017 
only focuses on the domestic gap between supply and demand. 

The supply risk level of Cu, Co, and Zr is expected to remain high, 
and that of Al is anticipated to remain medium-to-high. According to the 
assessment from 2008 to 2017, Cu, Co, and Zr have been basically at a 
high supply risk level. Although China’s economic growth has slowed 
down, demand for Cu is anticipated to continue growing at a low speed 
(MIIT, 2016b). The development of alloy materials and precise casting 
industries has further increased the demand for Co and Zr (Tan et al., 
2015; Wang et al., 2019b). The supply risk of Cu, Co, and Zr is expected 
to remain high, with China having 3% of the global reserves (USGS, 
2019), as demand continues to rise and domestic supply not increasing 
markedly. Consumption per unit of GDP for Al is expected to continue at 
a low growth rate of about 0.03% before 2025 (Zhang, 2018). Therefore, 
it is anticipated that Al’s supply risk will remain at a medium-to-high 
level before 2025. 

The supply risk of Au, Cr, Ni, W, Sn, Sb, and Li is expected to increase 
from the current level of medium-to-high to high. According to the 
supply risk assessment from 2008 to 2017, these seven minerals are at a 
medium-to-high supply risk level. Under China’s supply-side structural 
reform, the demand for gold jewelry seems to maintain a low growth 
rate (Yuan et al., 2018). However, Au’s supply may decrease in the next 
30 years (Yuan et al., 2018), which is likely to raise Au’s supply risk level 
to high. With the vigorous development of strategic emerging industries 
such as new energy, new materials, energy conservation, and environ-
mental protection in China, the demands for Cr, Ni, W, Sn, Sb, and Li has 
been increasing rapidly (MIIT, 2016b). The application of Ni and Li in 
battery materials has stimulated the demand for Ni and Li (Yuan et al., 
2018). Key developments in high-quality alloy materials have increased 
the consumption of Cr and Sn. The demand for Cr is anticipated to reach 
about 19 million tons in 2023 (Pan et al., 2018), while the consumption 

Fig. 6. Changes in strategic metallic minerals’ supply risk class (2008–2017). Notes: Each value point is the class acceptability index of the risk class with the 
maximum probability. The acceptability index’s ranges of the four supply risk classes on the Y-axis are [0, 1]. The supply risk increases from bottom to top: low risk 
(L), low-to-medium risk (LH), medium-to-high risk (MH), high risk (H). 
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of Sn may increase by 2% annually (Wang et al., 2018b). The develop-
ment of vacuum electronic devices and high-end alloy materials is ex-
pected to increase consumption of W by 5% annually (Zhang, 2017). The 
application of Sb in flame retardant and battery industries is expected to 
lead to a peak consumption of Sb in 2025 (Luo et al., 2017). While the 
demand has been increasing, the domestic supply of these minerals has 
not improved significantly, and even shows a declining trend. For 
example, Li’s reserves decreased from 3.2 million tons to one million 
tons in 2018 (USGS, 2019). Therefore, the increasingly prominent gap 
between supply and demand is likely to raise the supply risk to high. 

The supply risk of Mo is anticipated to rise from the current low-to- 
medium level to at least medium-to-high, while REE’s supply risk level 
may rise from low to low-to-medium. With the development of high-end 
alloy materials and vacuum electronic devices, the annual growth rate of 
Mo’s demand is expected to reach about 8% (Zhou et al., 2018). 
Although Mo reserves have increased, they still cannot meet the rapidly 
growing demand and thus, foreign supply is necessary. Import depen-
dence for Mo has increased from 0% to 13% (MNRC, 2018; USGS, 2019). 
Therefore, its supply risk level is likely to increase from low-to-medium 
to at least medium-to-high. With the development of strategic emerging 
industries, the output of major rare earth functional materials, such as 
rare earth magnetic and catalytic materials, has increased by over 15% 
annually (MIIT, 2016c), which may put more pressure on its supply. 
Therefore, although China’s reserves and output of REE are the largest 
worldwide, the future supply risk level of REE is likely to rise from low to 
low-to-medium. 

The supply risk level of Fe is anticipated to decrease from medium- 
to-high to low. Fe’s supply risk fluctuated from 2008 to 2017. Demand 
for Fe is likely to continue to decline due to the overcapacity of steel and 
China’s economic transformation (MIIT, 2016a). Moreover, the use of 
scrap steel is also continuously being promoted. It is estimated that the 
scrap ratio may increase from 10.66% in 2015 to 20% in 2025, which 
can relieve the supply pressure effectively (Zhu, 2018). Hence, it is 
anticipated that the risk of Fe’s supply will decrease. 

7. Conclusions and policy recommendations 

7.1. Conclusions 

The SMAA-TRI method revealed eleven indictors on resource avail-
ability, economic correlation, technological level, and import insta-
bility. These indicators were chosen to evaluate the supply risks of 14 
strategic metallic minerals. The evaluation results lead to the following 
conclusions: 

a) The supply risk of 14 strategic metallic minerals in China has been 
generally high between 2008 and 2017. While the supply risk levels 
of Mo and REE have been low or low-to-medium, the other 12 
minerals have exhibited high or medium-to-high supply risk levels. 
The high supply risk of these 12 minerals results from a high 
dependence on imports, caused by high demand and insufficient 
domestic supply; 
b) The supply risk of Cu, Au, W, and Li has increased between 2008 
and 2017, while that of Ni has decreased. The development of stra-
tegic emerging industries has increased the demand for Cu, Au, and 
Li. Changes in mineral substitutability and the source countries’ 
environmental performance are responsible for the increasing supply 
risk of W. The increasing reserves and decreasing demands for Ni has 
reduced its supply risk. Meanwhile, demand fluctuations are the 
primary reason for the changes in the supply risk of Fe, Sn, and REE, 
and the supply risk fluctuations of Cr and Mo are caused by changes 
in the source countries’ environmental performance; 
c) The supply risk of six minerals—Cr, Ni, W, Mo, Li, and REE—have 
been affected by potential higher risk factors, primarily due to their 
poor substitutability and low recycling rate, which have failed to 
alleviate supply pressures; and 

d) The supply risk of seven strategic metallic minerals—Au, Cr, Ni, 
W, Sn, Sb, and Li—is expected to increase to high levels from 2018 to 
2025, while the supply risk of Fe is anticipated to decrease. With no 
marked improvement in supply, the supply risks for Au, Cr, Ni, W, 
Sn, Sb, and Li are likely to rise to high levels, and the supply risk of 
Mo may rise to a medium-to-high level. The supply risk levels of Cu, 
Co, and Zr are expected to remain high, and that of Al is anticipated 
to remain at medium-to-high. Steel’s overcapacity and economic 
transformation in China are expected to reduce the demand for Fe, 
while the use of scrap steel may effectively ease the supply pressure 
on Fe, causing its supply risk to decrease. Lastly, the supply risk of 
REE is expected to increase because of the growing output of major 
rare earth functional materials. 

7.2. Policy recommendations 

This study’s evaluation results for the supply risk of China’s strategic 
metallic minerals from 2008 to 2017 lead to the following policy rec-
ommendations for decreasing supply risk and ensuring supply security. 

a) Strengthen the exploration of 12 minerals—Fe, Cr, Cu, Al, Au, Ni, 
W, Sn, Sb, Co, Li, and Zr—and expand their import channels. 
Compared with some minerals with abundant reserves, such as Mo 
and REE, import dependence for ten minerals—Fe, Cr, Cu, Al, Au, Ni, 
Sn, Co, Li, and Zr—is more than 55%. Further, W and Sb are pri-
marily supplied domestically but can only be mined for less than 30 
years. Therefore, some measures should be taken to reduce the 
supply risk of these minerals. Attracting all types of invest-
ments—including national finance, enterprise, public, and foreign 
investments—can strengthen mineral exploration. Moreover, 
encouraging mineral enterprises to invest in foreign sources in the 
context of international cooperation, for instance, through China’s 
Belt and Road initiative, can help diversify the source of these 
minerals. 
b) Establish strategic reserves for Fe, Cr, Cu, Al, Au, Ni, W, Sn, Mo, 
Sb, Co, Li, REE, and Zr. According to the evaluation results, changes 
in the supply risk of these 14 minerals have resulted from demand 
fluctuations and policy and enterprise decisions in the process of 
economic development. Strategic reserves can be established to fill 
the supply and demand gap of scarce minerals (such as Fe, Sn, and 
Cr) in a timely manner and prevent minerals such as REE from 
reducing their dominance due to large exports. 
c) Improve the technology levels for substitution and recycling of Cr, 
Ni, W, Mo, Li, and REE. At present, the substitution of Cr, Ni, W, and 
Mo may lead to high cost or degrade the associated products’ per-
formance. Meanwhile, the recycling rates for Li and REE metals are 
minimal. The government can introduce incentives to promote 
technological innovation and motivate enterprises to invest in sci-
entific research. Such investments can help improve substitution and 
recycling of these metallic minerals. 
d) Improve the utilization efficiency and cooperation for the recov-
ery of metallic minerals. Demand growth from the development of 
strategic emerging industries will put most of China’s minerals 
supply at high risk in the future. With no improvement in domestic 
supply, improving mineral utilization efficiency and cooperation for 
recovery of these minerals can ease supply pressures. On the one 
hand, improving the utilization efficiency of low-grade minerals can 
make full use of China’s large amounts of low-grade metallic min-
erals. On the other hand, because metals is often forged as alloys, 
promoting the coordinated development of metal recovery can 
improve the recycling rates of alloy metals. 
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