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As a new technical means that can detect abnormal signs of water inrush in advance and give an early
warning, the automatic monitoring and early warning of water inrush in mines has been widely valued
in recent years. Due to the many factors affecting water inrush and the complicated water inrush mech-
anism, many factors close to water inrush may have precursory abnormal changes. At present, the exist-
ing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater
level, water influx, and temperature, and performs water inrush early warning through the abnormal
change of a single factor. However, there are relatively few multi-factor comprehensive early warning
identification models. Based on the analysis of the abnormal changes of precursor factors in multiple
water inrush cases, 11 measurable and effective indicators including groundwater flow field, hydrochem-
ical field and temperature field are proposed. Finally, taking Hengyuan coal mine as an example, 6 indi-
cators with long-term monitoring data sequences were selected to establish a single-index hierarchical
early-warning recognition model, a multi-factor linear recognition model, and a comprehensive intelli-
gent early-warning recognition model. The results show that the correct rate of early warning can reach
95.2%.
� 2021 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mine water inrush is one of the main disasters that can occur in
the process of mine construction and production, and its preven-
tion is an important scientific research topic [1–3]. Mine water
inrush accidents not only cause the death of mine personnel but
also cause serious damage to various machinery and electrome-
chanical equipment and result in huge economic losses [4,5]. To
further explore the prevention and control methods of coal mine
water inrush, with the help of geology, mechanics, mining and
other interdisciplinary fields, many experts have studied the mon-
itoring, forecasting, and control of coal mine water inrush, the cor-
responding seepage mode and mutation mechanism of mining coal
and rock, the crack propagation in and the evolution law of
dynamic coal rock, the formation mechanism of water inrush chan-
nels, and the hydrological and geological structural characteristics
in water inrush coal mines [6–9]. With an increasing understand-
ing of the inrush mechanism of coal mine floor water, some new
theoretical methods, such as the fuzzy comprehensive evaluation
method [10] and cusp catastrophe theory [11], have been used to
predict and forecast floor water inrush and accurately evaluate
the risk of floor water inrush. Furthermore, the multi-index vulner-
ability index method [12–14] has been used to evaluate floor water
inrush and has matured the development of long-term prediction
and evaluation of coal mine water inrush. However, real-time
monitoring and early warning systems have gradually begun to
be developed. With the advancement of monitoring technology,
the monitoring indicators of an early warning system not only
include water pressure, water temperature, stress and strain in
the traditional sense but also hydrochemical indicators and micro-
seismic indicators to assist in the judgment of water inrush early
warning. The application of microseismic monitoring technology
has successfully been used to study the inoculation mechanism
and early warning of coal mine rock bursts [15,16] and successfully
monitors the abnormal response of a number of microseismic
events during the formation, development, incubation and evolu-
tion of the water channel [17]. There are almost no direct warnings
using water chemical indicators and most are used to identify
water inrush sources for auxiliary warnings [18,19].

At present, most mine water inrush early warning systems
monitor the water level or water pressure to provide early warn-
of mine

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ijmst.2021.07.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:843288503@qq.com
https://doi.org/10.1016/j.ijmst.2021.07.012
http://www.sciencedirect.com/science/journal/20952686
http://www.elsevier.com/locate/ijmst
https://doi.org/10.1016/j.ijmst.2021.07.012


X. Wang, Z. Xu, Y. Sun et al. International Journal of Mining Science and Technology xxx (xxxx) xxx
ings, but with deep coal mining, single-factor early warning sys-
tems have difficulty dealing with complex coal mine water
inrushes. In contrast, there are relatively few comprehensive
real-time monitoring and early warning systems that use multiple
indicators for monitoring, and there is no unified standard of early
warning quantification criteria for various early warning indica-
tors. Therefore, it is particularly important to determine the indica-
tors for real-time monitoring and early warning, as well as their
early warning criteria, to establish a comprehensive early warning
model.
Fig. 1. Schematic diagram of the BP neural network structure.
2. Methodology

2.1. Water inrush mechanism from the coal seam floor

The causes of water inrush from the coal mine floor involve
many factors and a complicated mechanism. In short, the main
cause of water inrush from the coal seam floor is that the water
pressure of the aquifer under the coal seam is too high, and the
thickness and strength of the water barrier between the coal seam
and the aquifer are low. The cyclical pressure caused by coal min-
ing causes fractured zones in the strata below the working face.
The confined water is affected by the pressure and stress distribu-
tion of the mine, and the confined aquifer will form a conduction
zone. In the process of repeated mining in coal mines, the joint
action of tensile and compressive stresses in the aquifuge contin-
ues to form cracks, and the aquifuge’s strength gradually decreases.
When the conduction zone and the failure zone are close to each
other, they cannot withstand the water pressure, resulting in water
inrush from the coal floor.

2.2. BP neural network theory

Due to its powerful self-learning and predictive abilities,
machine learning has been tried and applied in various fields
of coal mining [20–23]. Because of its three-layer structure,
including the input layer, the hidden layer and the output layer,
and the built-in sigmoid transfer function, the BP neural network
realizes nonlinear mapping of the input and output, which is
advantageous in the field of risk assessment and early warning.
The input data are passed to the output layer via the hidden
layer according to the given threshold and weight. When the
error of the output value in the output layer is greater than
the set value, the error passed back along the neural network
adjusts the threshold and weight of each layer. When the output
data and the expected data are within the error range, the data
are output (Fig. 1).

The main steps of BP neural network establishment are to
determine the basic information of the input and output data sets
and the number of input, hidden, and output layer nodes. In a gen-
eral BP neural network, the hidden layer output (Hj) is determined
by the following formula (Eq. (1)):

Hj ¼ f j
Xn
i¼1

wijxi � aj

 !
j ¼ 1;2;3; � � � ; l ð1Þ

where xi represents the input data; wij is the weight; aj repre-
sents the hidden layer threshold; l is the number of hidden layer
nodes; and fj is the hidden layer transfer function, which is gener-
ally a sigmoid-type function.

The output result of the output layer is calculated by the hidden
layer output result H, the connection weight wjk and the threshold
b. Then, the prediction error e is calculated based on the predicted
output O and the expected output Y (Eqs. (2) and (3)).
2

Ok ¼
Xl

j¼1

Hjwjk � bk k ¼ 1;2; � � � ;m ð2Þ

ek ¼ Yk � Ok k ¼ 1;2; � � � ;m ð3Þ
where Ok is the output value of the output layer; bk the neural

network change threshold; and ek the error.
The errors are used to update network connection weights and

thresholds and this process is continuously repeated (Eqs. (4)–(7)).
When the error drops below a given error and the weight and
threshold no longer change, the input data can be predicted based
on the existing data.

w0
ij ¼ wij þ gHj 1� Hj

� �
x ið Þ

Xm
k¼1

wjkek i ¼ 1;2; � � � ;n; j ¼ 1;2; � � � ; l

ð4Þ

w0
jk ¼ wjk þ gHjek j ¼ 1;2; � � � l; k ¼ 1;2 � � �m ð5Þ

a0j ¼ aj þ gHj 1� Hj
� �Xm

k¼1

wjkek j ¼ 1;2; � � � ; l ð6Þ

b0
k ¼ bk þ ek ð7Þ
where w0

ij and w0
jk are the updated weights; a0

j and b0
k the

updated thresholds; and g the learning efficiency.
Based on the BP neural network with a small amount of data

established by MATLAB, the weights and thresholds in the middle
can be adjusted autonomously by the system according to the
error, avoiding excessive human intervention.

3. Study area

Located in Liuqiao Town, Suixi County, Huaibei City, Anhui Pro-
vince, Hengyuan coal mine is adjacent to Yongcheng City, Henan
Province to the west of the provincial boundary and is approxi-
mately 13 km southwest of Huaibei City. Because it is in the central
part of the Huaibei Plain, the terrain of the mining area is flat, slop-
ing from northwest to southeast, and the bedrock is not exposed
and is entirely covered by a huge loose Cenozoic layer. The climate
in this area is mild, belonging to the oceanic to continental climate
in the monsoon region of the northern temperate zone. The precip-
itation has changed significantly. The annual average temperature
is 14.3 �C, the annual average rainfall is 785 mm, and the rainfall is
mostly concentrated in July and August. In the wet season, climate



Fig. 2. Hengyuan coal mine location and structure distribution map.
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has almost no effect on the water level and water quality of the
main research horizon. Since it is separated by the Tulou Fault,
Guxiaoqiao Fault, Mengkou Fault and Lvlou Fault, greater than 40
various faults with a drop of greater than 10 m have been revealed
in the mining area, showing the characteristics of high density and
different development directions (Fig. 2).

The bedrock in the Hengyuan coalmine is completely covered by
Cenozoic alluvial strata, with very few strata exposed, mostly cov-
ered by Quaternary alluvial plains. The exposed strata from old to
new are Ordovician (O1+2), Carboniferous (C2+3), Permian (P), Neo-
gene (N) andQuaternary (Q) (Fig. 3). Themine is 2–4.2 kmwide from
east to thewest and 6.2 km long fromnorth to south, with an area of
19.1 km2. The aquifuge of the limestone aquifer from the lower part
of the Shanxi Formation in the lowerPermian to theupperpart of the
Taiyuan Formation is mainly 52.05 m thick argillaceous sandstone
and was destroyed after mining, forming many fractures and water
channels, accompanied by recharge. The limestone aquifer of the
Taiyuan Formation (hereinafter, the Taihui aquifer), i.e., the main
water-filled aquifer under coal 6, has an average thickness of
60.76 m and is widely distributed and stable. The water pressure
of the Taihui aquifer in the mining area ranges from 4.27 to
5.25 MPa, with an average value of 4.73 MPa, and its average water
inrush coefficient is 0.09 MPa/m, far exceeding the critical water
inrush coefficient. Coupled with the wide-scale distribution of folds
and faults, the mining area is extremely prone to water inrush acci-
dents from the coal floor. Therefore, it is important for the safety of
miners, the economic safety of mines and orderly and reasonable
mining to establish a real-time monitoring and early warning sys-
tem for mine water inrush.
4. Results

The first step in establishing an early warning indicator system
suitable for mining areas is to establish a real-time monitoring and
early warning model for mine water inrush. From the analysis of
the coal mine water inrush mechanism and real-time monitoring,
in theory, 11 indicators, including the water level, water inflow,
water temperature, hardness, Ca2+, Na+, stress, displacement, num-
ber of microseismic events, pH and TDS, can be used as early warn-
ing indicators. However, in practice, due to different coal mine
monitoring indicators, all 11 indicators do not need to be used.
Considering the abundant water level, water inflow, water temper-
ature, and water quality monitoring values of Hengyuan coalmine
and directly affected by water inrush, the threshold determined by
the above indicators is more scientific and reasonable, and the
results of the early warning system are more accurate. Among
them, the aquifer water level, mine water inflow and water tem-
perature are traditionally used monitoring indicators, and Ca2+,
Na+ and TDS are water chemical indicators. In this research, the
water level and mine water inflow can best reflect that the water
inrush from the coal floor belongs to the level Ⅰ index. Water tem-
perature and Ca2+ and Na+ concentrations are relatively poor,
belonging to the level Ⅱ index, and finally, the TDS is the level III
index. For the early warning mode of each indicator, all adopt
the early warning of indicator abnormality and the hierarchical
early warning mode after abnormality.
Fig. 3. Comprehensive stratum histogram of the Hengyuan coal mine.
4.1. Quantitative criteria for real-time monitoring and warning of
mine water inrush

4.1.1. Quantitative guidelines for early warning of abnormal
monitoring indicators

In the current long-term evaluation of mine water inrush,
multi-index predictions are often made on the quantification of
aquifer thickness, water richness, faults, etc. [24–28]. Based on pre-
3

vious research and hydrogeochemical indicators of water source
identification methods, the quantitative method of real-time warn-
ing indicators is set with the help of monitoring data [29–32].



Fig. 5. Water level of the Taihui observation boreholes in 2013.

Fig. 6. Water level of the Taihui observation boreholes in 2016.

Fig. 7. Changes in mine water inflow in 2014.
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4.1.1.1. Quantitative criteria for early warning of traditional indica-
tors. Since the water level of the aquifer drops significantly when
water inrush occurs in coal mines and is the easiest to monitor,
it is already a routine monitoring item for coal mines. To determine
the quantitative criteria for anomalous early warning, the water
level change data (Fig. 4) of long-term observation holes (water
hole 4, water hole 5, water hole 18 and water hole 20) of the Taihui
aquifer in the mining area from 2010 to 2011 were used as the
background values. Combined with the water levels in the hydro-
logical observation holes (water hole 5 and water hole 18) in
2013 (Fig. 5) and the water levels fromwater hole 5 and water hole
18 (Fig. 6) in 2016, the abnormal warning threshold of the water
level is determined, and its determination method is proposed.

In the entire mining area, there are certain differences in the
water level values of each long-term observation hole, and setting
the threshold should also consider the situation of the observation
hole. From 2010 to 2011, the variation in the water level showed
that the largest standard deviation of the water level was
15.77 m for water hole 20, and the smallest was only 2.62 m for
water hole 18. These data and the phenomenon reflect the charac-
teristics that the water level can change slightly over a short period
of time. Comparing the degree of the decrease in the water level in
water hole 5 and water hole 18 from 2011 to 2013, the average
water level in water hole 5 dropped by 41 m, and the average
water level in water hole 18 dropped by 30 m, which reflects the
overall downward trend of the aquifer water level. According to
the data in 2016, in the stable section, the standard deviation of
the water level in water hole 5 was 3.05 m, and the standard devi-
ation of the water level in water hole 18 was 2.54 m. To examine
the early warning effect, the threshold of the water level is the
stable average water level (H) minus the standard deviation of
the water level (rh), that is, Hthreshold = H-rh. Taking water hole
18 of as an example, the average water level in 2016 was
�294.4 m, and the initial abnormal threshold Hthreshold of the early
warning system in 2017 was �296.9 m. An abnormality was issued
when the abnormal threshold was exceeded.

With the specific cases in many coal mines, mine water inflow
occupies an important position in the monitoring index system,
mainly because the formation of water channels causes groundwa-
ter to enter the mine, inevitably resulting in an increase in water
inflow. According to the statistics of mine water inflow data from
2014 to 2015 in mining areas, such as roadways II6111, II617
and II628 (Figs. 7 and 8), the mine water inflow of each working
face is relatively stable under normal conditions. Therefore, histor-
ical data are used to determine the early warning threshold of
mine water inflow abnormalities.

The historical data analysis of mine water inflow from 2014 to
2015 shows that for roadway II6111, the standard deviations were
3.55 and 3.26 m3/d, respectively. For roadway Ⅱ617, the annual
fluctuation was relatively large, and the standard deviations during
Fig. 4. Water level of the Taihui observation boreholes in 2011.

4

its relatively stable period were 1.52 and 1.91 m3/d, respectively.
For roadway Ⅱ628, the standard deviations were 2.57 and
2.24 m3/d, respectively. Under normal circumstances, these all
reflect that the annual water inflow of each roadway is relatively
stable. Suppose rQ is the standard deviation of the normal and
Fig. 8. Changes in mine water inflow in 2015.
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stable water inflows and Q’ is the average water inflow under
stable conditions. The upper limit of the inflow threshold is Qthresh-

old = Q’+rQ. When the monitored water inflow is greater than this
value, an abnormal warning is issued for the inflow. Taking the
II6111 roadway in 2015 as an example, the stable average water
inflow Q’ was 11.1 m3/d, and the initial threshold was set to
14.4 m3/d.

Water temperature is one of the earliest indicators used in coal
mine early warning because different aquifers may have different
temperatures. Changes in the water temperature during water
inrush indicate that mining has formed a water channel. Thus,
the water temperature can assist in determining the water inrush.
In view of the water inrush from the coal seam floor, due to the
high water temperature in the underlying aquifer, there is a water
inrush risk when the monitoring water temperature is close to the
observation well’s water temperature. Therefore, the historical
data of the Taihui aquifer in 2017 are used to summarize the gen-
eral characteristics of the water temperature in the aquifer and
then to determine the water temperature threshold (Fig. 9).

The water temperatures of the two hydrological observation
holes are close (stabilized between 32.5 �C and 33.5 �C), and the
standard deviations of the water temperatures for water hole 5
and water hole 18 are 0.01 �C and 0.08 �C, respectively, and reflect
the characteristics of very small water temperature changes.
Therefore, under normal circumstances, the water temperature is
relatively stable and has difficulty increasing or decreasing. To
ensure the early warning effect, the water temperature abnormal
warning threshold Tthreshold of each hole should be the lowest value
of the limestone water temperature of the Taiyuan Formation, that
is, Tthreshold = min TTaihui.

4.1.1.2. Quantitative criteria for early warning of abnormal hydro-
chemical indicators. In previous early warning systems, water
chemistry indicators were almost never included because of the
difficulty of quantification and threshold determination. Therefore,
it is of great significance to propose early warning quantitative cri-
teria for water chemistry indicators. The relatively independent
water chemistry characteristics between different types of aquifers
lead to certain differences in the water chemistry indicators.
Therefore, the TDS, Na+, and Ca2+ data in the 2018 hydrochemical
data of this mining area are selected to detail the quantitative
results. The thresholds of TDS, Na+ and Ca2+ in the study area were
determined by statistically analyzing the hydrochemical character-
istics of the eighth aquifer under the coal floor, the hydrochemical
characteristics of the Taihui aquifer and the hydrochemical charac-
teristics of the mine mixed water in 2018 (Tables 1, 2 and 3).

The hydrochemical characteristics of the eighth aquifer and the
Taihui aquifer have different cationic characteristics, while the
degree of discrimination in anionic characteristics is relatively
small. The eighth aquifer showed the characteristics of generally
Fig. 9. Long-term observation hole water temperature curve of the Taihui aquifer in
2017.
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high TDS and Na+ and low Ca2+ concentrations. The average TDS
was 3302.51 mg/l, and most were greater than 3000 mg/l. The
average concentration of Na+ was 1019.15 mg/l, and greater than
95% were greater than 500 mg/l. The maximum concentration of
Ca2+ was only 69.36 mg/l, and the average concentration was
approximately 28.48 mg/l. In contrast, the Taihui aquifer presents
the characteristics of generally low TDS and Na+ and high Ca2+ con-
centrations. The average TDS of the Taihui aquifer was 2644.3 mg/l,
and almost all TDS measurements were less than 3000 mg/l. The
average concentration of Na+ was 434.25 mg/l, and most were less
than 500 mg/l. The maximum concentration of Ca2+ reached
213.49 mg/l, and the average concentration was approximately
96.13 mg/l. Synthesizing the differences in water quality, the
abnormal warning threshold of water chemistry indicators is
determined by constructing a membership function. The method
for determining the abnormal warning threshold is explained in
detail with the TDS indicator as an example, and the method for
determining the rest of the indicators is the same.

An important step is to determine the threshold using statistical
data to construct membership functions of the above three indica-
tors in the two aquifers. Taking the TDS index of the eighth sand-
stone aquifer as an example, the function construction process is
elaborated using the trapezoidal membership function. From the
above table, from the smallest value of 2023.48 mg/l to the largest
value of 4756.85 mg/l, the membership degree of the TDS range
less than its minimum and greater than its maximum is 0. Since
the proportion of TDS greater than 2948.19 mg/l and less than
3939.97 mg/l is approximately 70%, the range of membership is
1. Therefore, the membership function r1(x) can be obtained as
Eq. (8):

r1 xð Þ ¼

0 x 6 2023:48ð Þ
x�2023:48

2948:19�2023:48 2023:48 < x 6 2948:19ð Þ
1 2948:19 < x 6 3939:97ð Þ

4756:85�x
4756:85�3939:47 3939:97 < x 6 4756:85ð Þ

0 x > 4756:85ð Þ

8>>>>>><
>>>>>>:

ð8Þ

where r1(x) is the TDS membership function of the eighth aqui-
fer, and � the measured ion concentration in mg/l.

Therefore, the TDS membership function (Eq. (9)) in the Taihui
aquifer is:

r2 xð Þ ¼

0 x 6 2003:58ð Þ
x�2003:58

2023:48�2003:58 2003:58 < x 6 2295:28ð Þ
1 2295:28 < x 6 2908:64ð Þ

3012:56�x
3012:56�2908:64 2908:64 < x 6 3012:56ð Þ

0 x > 3012:56ð Þ

8>>>>>><
>>>>>>:

ð9Þ

where r2(x) is the TDS membership function of the Taihui aqui-
fer, and � the measured ion concentration in mg/l.

Similarly, the membership functions of Na+ and Ca2+ in the two
aquifers are as Eqs. (10)-(13).

r3 xð Þ ¼

0 x 6 483:06ð Þ
x�483:06

894:71�483:06 483:06 < x 6 894:71ð Þ
1 894:71 < x 6 1226:62ð Þ

1550:27�x
1550:27�1226:62 1226:62 < x 6 1550:27ð Þ

0 x > 1550:27ð Þ

8>>>>>><
>>>>>>:

ð10Þ

r4 xð Þ ¼

0 x 6 168:65ð Þ
x - 168:65

364:78 - 168:65 168:65 < x 6 364:78ð Þ
1 364:78 < x 6 559:93ð Þ

673:39�x
673:39�559:93 559:93 < x 6 637:39ð Þ

0 x > 637:39ð Þ

8>>>>>><
>>>>>>:

ð11Þ



Table 1
Statistical hydrochemical data from the eighth aquifer in 2018 (mg/l).

Date TDS Na+ Ca2+ Mg2+ Cl- SO4
2- HCO3

–

2018/1/2 2023.48 483.06 69.36 57.53 65.02 1184.3 164.21
2018/1/15 3058.11 887.78 47.87 20.98 134.83 1503.13 463.52
2018/2/6 2779.31 887.78 54.62 21.4 97.18 1407.84 409.48
2018/3/1 3453.26 1087.35 4.83 6.35 147.14 1734.71 472.88
2018/3/2 2204.31 578.6 46.89 34 107.79 833.2 603.83
2018/3/7 2620.63 822.73 14.34 3.52 191.28 1202.14 386.62
2018/3/9 2815.21 894.71 15.47 2.25 199.84 1385.07 308.67
2018/3/21 3349.33 982.6 63.15 10.36 180.33 1577.64 535.24
2018/3/23 3597.01 1140.4 13.37 0.2 256.65 1618.93 567.45
2018/4/16 4236.31 1320.32 27.07 11.53 114.64 2518.51 244.23
2018/4/24 3368.2 951 41.24 48.66 60.9 1923.43 342.97
2018/4/25 3322.82 1059.99 9.51 1.17 223.79 1598.1 430.27
2018/4/27 2948.19 822.71 2.74 78.75 163.92 1564.13 315.94
2018/5/3 3221.93 1005.18 17.88 6.74 111.2 1701.91 358.56
2018/5/8 3650.91 1128.9 21.75 5.28 129.69 1840.45 524.84
2018/5/10 3939.97 1242.43 28.36 3.81 296 1927.67 441.7
2018/5/11 4053.09 1270.51 23.04 8.4 131.06 2349.87 270.22
2018/5/15 3882.33 1226.62 27.79 3.42 354.16 1706.73 550.83
2018/5/30 4756.85 1550.27 13.7 2.74 427.05 2471.05 292.04
2018/6/5 3400.58 992.92 19.99 37.24 114.98 1654.49 580.96
2018/6/12 2808.07 959.65 44.65 20.04 87.6 1444.83 182.81
2018/6/14 2982.33 1068.14 25.31 102.34 112.92 1152.16 453.98
2018/7/2 3485.57 1076.89 19.18 5.08 165.96 1610.47 607.99

Table 2
Statistical hydrochemical data from the Taihui aquifer in 2018 (mg/l).

Date TDS Na+ Ca2+ Mg2+ Cl- SO4
2- HCO3

–

2018/2/13 2003.58 168.65 32.39 278.74 65.36 1271.22 217.21
2018/3/20 2295.28 406.29 110.21 119.39 97.52 1044.3 517.57
2018/3/23 2529.92 559.93 61.71 106.3 126.26 1158.15 517.57
2018/4/2 2823.41 340.06 76.37 304.05 150.91 1657.91 294.12
2018/4/22 2908.04 364.78 46.89 323.69 151.93 1672.58 348.16
2018/4/25 2686 418.67 140.18 189.05 138.93 1653.67 145.5
2018/5/5 3012.56 637.39 92.17 149.09 147.14 1770.6 216.17
2018/5/10 2638.81 406.71 91.84 216.21 150.56 1517.82 255.67
2018/5/16 2871.07 605.81 213.49 57.16 135.17 1667.17 192.27
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r5 xð Þ ¼

0 x 6 2:74ð Þ
x - 2:74

13:37 - 2:74 2:74 < x 6 13:37ð Þ
1 13:37 < x 6 38:36ð Þ

69:36�x
673:39�559:93 38:36 < x 6 69:36ð Þ

0 x > 69:36ð Þ

8>>>>>><
>>>>>>:

ð12Þ
r6 xð Þ ¼

0 x 6 32:39ð Þ
x - 2:74

76:37 - 2:74 32:39 < x 6 76:37ð Þ
1 76:37 < x 6 110:21ð Þ

213:49�x
213:49�110:21 110:21 < x 6 213:49ð Þ

0 x > 213:49ð Þ

8>>>>>><
>>>>>>:

ð13Þ

where r3(x) and r4(x) are the Na+ membership functions of the
eighth aquifer and the Taihui aquifer; r5(x) and r6(x) the Ca2+ mem-
bership functions of the eighth aquifer and the Taihui aquifer;
and � the measured concentration of the ion in mg/l.
Table 3
Statistical hydrochemical data from the mine mixed water in 2018 (mg/l).

Date TDS Na+ Ca2+

2018/3/5 2556.41 572.25 64.05
2018/3/7 2310.7 449.25 58
2018/3/25 3339.84 779.25 79.59
2018/4/8 2655.71 665.7 12.08
2018/4/15 3222.95 800.73 9.83
2018/5/4 1805.05 332.02 6.61
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When the water inrush risk comes from the Taihui aquifer, it is
likely to be accompanied by a decrease in the TDS and Na+ concen-
tration and an increase in the Ca2+ concentration. In the Taihui
aquifer, due to the poor effectiveness of TDS and Na+, the threshold
is the concentration when the membership degree is 1. Ca2+ is
more effective, and the threshold is the concentration at which
the membership degree is 0.5. For the TDS with a membership of
1, the maximum TDS value is 2908.64 mg/l, which is the threshold
for abnormalities, and an abnormal warning should be issued
below this value. When the membership degree of Ca2+ is 0.5,
the minimum value is 54.38 mg/l, which is used as the abnormal
threshold. The abnormal thresholds are summarized as follows
(Table 4).

4.1.2. Quantitative guidelines for early warning of hierarchical
warning indicators

The sudden and instantaneous characteristics of coal mine
water inrush lead to rapid changes in the indicator values within
Mg2+ Cl- SO4
2- HCO3

–

113.58 121.48 1435.62 249.43
155.79 242.61 1209.67 195.39
122.23 145.09 1696.12 517.57
108.45 117.03 1451.06 301.39
131.8 147.48 1582.27 550.83
148.41 100.95 941.64 275.41
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a short period of time after the monitoring index breaks through
the abnormal threshold. However, no unified regulations have
been proposed for coal mine water inrush warnings. Therefore, it
is extremely important to set the hierarchical early warning mode
and quantification method of each index according to the different
index characteristics. In this early warning system, the hierarchical
forecast mode after the abnormal phase is divided into 4 levels:
low risk, medium risk, high risk and extremely high risk. The hier-
archical early warning mode is a gradient early warning model,
that is, the gradient changes after the indicator exceeds the abnor-
mal threshold for early warning. According to the nature of the
indicator, the indicator is divided into a variable amplitude early
warning mode (Eq. (14)) and a variable value early warning mode
(Eq. (15)).

XI nð Þ ¼ Xn � Xs

Xs
� 100% ð14Þ

XI ¼ Xn � Xsj j ð15Þ
where Xn is the real-time monitoring value of the index; Xs the

threshold value when the index is abnormal; XI(n) the range of the
index variation grading warning; and XI the absolute value of the
index change.

4.1.2.1. Quantitative criteria for hierarchical warning of traditional
indicators. In the hierarchical early warning mode, there are differ-
ent modes for the aquifer water level, mine water inflow and water
temperature due to the index characteristics. The commonality is
that the spatial distribution and time scale of monitoring indicators
need to be considered, and early warning quantitative criteria must
be proposed based on certain time and space constraints.

In mine water inrush, a water level closer to the water inrush
point results in a greater drop in the water level over a short time.
To achieve an early warning, grading early warning criteria are
proposed based on the water level change within 12 h and within
a 1-km radius of the water inrush point. In the early warning mode,
the background value of the normal water level of each aquifer is
quite different, so the variable value early warning mode has a bet-
ter effect. As an absolute value of the water level change, ZI is the
quantitative indicator of the water level. Therefore, the water level
gradient early warning formula (Eq. (16)) is

ZI ¼ Zn � Zsj j ð16Þ
where Zn is the real-time monitoring value of the water level; Zs

the abnormal threshold value, and ZI the water level change value.
In the typical case of an extremely large water inrush in the

Taoyuan coal mine adjacent to the study area, according to the
17-hour monitoring of the water inrush point within 1 km, the
water level dropped by nearly 10 m in the first 2 h, and the drop
exceeded 20 m in 6 h (Fig. 10). Based on the type of water inrush
and expert opinions, it was finally determined that within 6 h of
abnormal water level data, 1 < ZI � 2 is low danger; 2 < ZI � 5 is
moderate danger; 5 < ZI � 10 is high danger; ZI > 10 is super high
danger (Table 5).

After water inrush, mine water inflow often shows the charac-
teristics of a ‘‘sudden jump”, and the increase rate is similar regard-
less of whether it is a small water inrush or a large water inrush, so
the variable amplitude early warning mode is adopted. The quan-
titative criteria are determined by the three representative small-
Table 4
Threshold summary table of water chemical indicators (mg/l).

Evaluation index TDS Na+ Ca2+

Abnormal threshold 2908.64 559.93 54.38
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scale water inrush incidents in this mine and one extralarge water
inrush incident in neighboring mines. In the II6112 working face,
water seepage occurred in the working face floor, and then the
water inrush suddenly increased from 2–3 m3/h to 15 m3/h
(Figs. 11 and 12). The water inrush event of the II627 working face
is similar to that of the Ⅱ6112 working face, except that the
amount of water inrush was different (Fig. 13). The extralarge
water inrush near the mine was increasingly large: after only half
an hour, the water inrush stabilized at approximately 30 m3/h, and
after 1 h, the water inrush rapidly increased to 150–200 m3/h
(Fig. 14).

The mine water inrush inflow often increased by 2–3 times, and
a smaller increase in the short period of time resulted in a lower
risk. The gradient warning mode of water inflow (Eq. (17)) is

QI nð Þ ¼ Qn � Qs

Qs
� 100% ð17Þ

where Qn is the real-time monitoring value of mine water
inflow; Qs the abnormal threshold of mine water inflow; and QI
(n) the variation range of water inflow.

According to the data and expert opinions, within 6 h after
abnormal mine water inflow, the threshold is as follows: 1 < QI
(n) � 2 is low danger; 2 < QI(n) � 3 is medium danger; 3 < QI
(n) � 4 is high danger; and QI(n) > 4 is super high danger (Table 6).

The main feature of the water temperature is slow growth and a
very small increment. According to the floor water inrush in the
neighboring Renlou coal mine, the water temperature near the
water inrush point increased by 1 �C 1 day after the water inrush
and 2 �C after 15 days (Fig. 15). Since the accuracy of the current
water temperature sensor is 0.1 �C and with a very small increase,
the variable value early warning mode is adopted. Therefore,
according to the characteristics of the water temperature indica-
tors, the hierarchical early warning mode (Eq. (18)) is

TI ¼ Tn � Tsj j ð18Þ
where Tn is the real-time monitoring value of the water temper-

ature; Ts the abnormal threshold of the water temperature; and TI
the value of the water temperature change.

Combining the mining area data and expert opinions, the grad-
ing early warning threshold within 24 h is 0.1 < TI � 0.2 is low dan-
ger, 0.2 < TI� 0.5 is medium danger, 0.5 < TI� 1 is high danger, and
TI > 1 is super high risk (Table 7).

4.1.2.2. Quantitative criteria for early warning of hierarchical hydro-
chemical indicators. The characteristic of TDS and Na+ is that a
lower monitoring value results in a higher risk. Since the abnormal
thresholds of TDS and Na+ are 2908.64 mg/l and 559.93 mg/l, when
the monitored TDS and Na+ values are lower than the two values
above, the model starts to enter the hierarchical early warning
mode. The tiered early warning evaluation indicators of TDS and
Na+ are specified as QI(TDS) and QI(Na+). According to Eq. (9), the
Fig. 10. Water level change curve after water inrush in the Taoyuan coal mine.



Table 6
Graded early warning table for water inflow.

Evaluation item Index rating Levels of danger

QI(n) 1 < QI(n) � 2 Low danger
2 < QI(n) � 3 Medium danger
3 < QI(n) � 4 High danger
QI(n) > 4 Extreme danger

Fig. 14. Major water inrush curve.

Table 5
Graded early warning table for the water level.

Evaluation item Index rating Levels of danger

ZI 1 < ZI � 2 Low danger
2 < ZI � 5 Medium danger
5 < ZI � 10 High danger
ZI > 10 Extreme danger

Fig. 11. Curve of water inrush from the wind tunnel in the Ⅱ6112 working face.

Fig. 12. Curve of water inrush in the II6112 working surface.

Fig. 15. Water inrush temperature curve.
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TDS hierarchical warning mode is as follows: 2644.3 < QI
(TDS) < 2908.64 is low danger; 2295.28 < QI(TDS) < 2644.3 is med-
ium danger; 2003.58 < QI(TDS) < 2295.28 is high danger; and QI
(TDS) < 2003.58 is extreme danger (Table 8). According to Eq.
(11), the Na+ hierarchical warning mode is as follows:
434.25 < QI(Na+) < 559.93 is low risk; 364.78 < QI(Na+) < 434.25
is medium risk; 168.65 < QI(Na+) < 364.78 is high risk; and QI
(Na+) < 168.65 is super high risk (Table 9).

In contrast, a higher Ca2+ monitoring value means a higher risk
of water inrush. According to the abnormal threshold for Ca2+ and
Eq. (13), the grading early warning evaluation index for Ca2+ is
Fig. 13. Water inrush map of the Ⅱ627 working face.
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specified as QI(Ca2+), and the grading early warning mode of Ca2+

is as follows: 54.38 < QI(Ca2+) < 76.37 is low risk; 76.37 < QI
(Ca2+) < 96.14 is medium risk; 96.14 < QI(Ca2+) < 110.21 is high
risk; and QI(Ca2+) > 110.21 is super high risk (Table 10).

4.2. Multifactor linear warning model for real-time monitoring of mine
water inrush

4.2.1. Construction of the risk evaluation matrix for mine water inrush
Because the construction of a multifactor comprehensive early

warning model for mine water inrush is relatively weak, it is
imperative to build a risk evaluation matrix that conforms to the
characteristics of coal mine water inrush with the help of the risk
evaluation matrix. Although the International Organization for
Standardization (ISO) recommends a 5 � 5 matrix, in practice, a
Table 7
Graded early warning table for the water temperature.

Evaluation item Index rating Levels of danger

TI 0.1 < TI � 0.2 Low danger
0.2 < TI � 0.5 Medium danger
0.5 < TI � 1 High danger
TI > 1 Extreme danger



Table 8
Graded early warning table for TDS.

Evaluation item Index rating Levels of danger

QI(TDS) 2644.3＜QI(TDS)＜2908.64 Low danger
2295.28＜QI(TDS)＜2644.3 Medium danger
2003.58＜QI(TDS)＜2295.28 High danger
QI(TDS)＜2003.58 Extreme danger

Table 9
Graded early warning table for Na+.

Evaluation item Index rating Levels of danger

QI(Na+) 434.25＜QI(Na+)＜559.93 Low danger
364.78＜QI(Na+)＜434.25 Medium danger
168.65＜QI(Na+)＜364.78 High danger
QI(Na+)＜168.65 Extreme danger
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reasonable risk matrix must be constructed based on the evalua-
tion criteria of various fields [33,34]. In coal mine water inrush,
according to the changes in various indicators in the study area
and the ‘‘Detailed Rules for Coal Mine Water Prevention and Con-
trol”, the degree of danger and the probability of occurrence are
divided into 4 levels, so the risk matrix adopts a 4 � 4 matrix.
The consequence (c) of each indicator event is assigned a value
of 1 to 4 from low risk to super high risk, and the probability of
occurrence of a water inrush event (p) is also assigned a value of
1 to 4 from ‘‘almost impossible” to ‘‘extremely likely”.

Risk classification is an important step in risk assessment.
Because the coal mine water inrush warning risk evaluation matrix
is too different from the original risk matrix, the 5-level evaluation
using the original risk matrix is not appropriate. Therefore, based
on the original standards and standards in other fields, the final
risk value is summarized as follows: low is 1–2; medium is 3–7;
high is 8–11; and extremely high is 12–16 (Table 11).
4.2.2. Weight calculation of the multifactor index for mine water
inrush

The analytic hierarchy process (AHP), originally proposed by
operations researcher Saaty T.L. and Saaty R.W [35,36], is a method
of joint decision making through qualitative analysis and quantita-
tive calculation. When analyzing the importance of each factor,
each factor is mainly compared at the same level to determine
the relative importance and is then passed up level by level to
Table 10
Graded early warning table for Ca2+.

Evaluation item Index rating Levels of danger

QI(Ca2+) 54.38 < QI(Ca2+)＜76.37 Low danger
76.37 < QI(Ca2+)＜96.14 Medium danger
96.14 < QI(Ca2+)＜110.21 High danger
QI(Ca2+)＞110.21 Extreme danger

Table 11
Evaluation matrix of coal mine water burst risk.

Probability (p)

Consequence (c) Almost impossible
(1)

Po
(2

Low danger (1) 1 2
Medium danger (2) 2 4
High danger (3) 3 6
Extremely high danger (4) 4 8
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determine the relative importance of each factor to the overall
goal. The analytic hierarchy process mainly includes hierarchical
model construction, expert surveys and scoring to determine the
importance of the comparison of pairwise indicators, the establish-
ment of a discriminant matrix, consistency testing and determina-
tion of the final weight. With the help of the vulnerability index
method [37,38], the construction of a real-time monitoring and
early warning system has also gained a certain reference.

When AHP is used to calculate the weight, the analytic hierar-
chy model is first constructed. The target level (level A) is the mon-
itoring and early warning evaluation of water inrush in the mining
face. The criterion level (level B) is the level I index, level II index
and level III index divided according to the validity of the index.
The decision-making level (level C) is divided into the water level
and water inflow under the first level indicators; the water tem-
perature, Ca2+ and Na+ concentrations are set under the second
level indicators; and the TDS is under the third level (Fig. 16).

Based on the analytic hierarchy model, the Bi-A level evaluation
matrix is taken as an example to describe the process of construct-
ing each low-level to high-level evaluation matrix.

The Bi-A level evaluation matrix (Eq. (19)) is

Bi � A ¼
1 3 5
1
3 1 3
1
5

1
3 1

2
64

3
75 ð19Þ

According to the AHP calculation method, the weights of each
index of the B level are wB1 = 0.64, wB2 = 0.26 and wB3 = 0.1. There-
fore, the feature vector (Eq. (20)) Aw is

Aw ¼
1 3 5
1
3 1 3
1
5

1
3 1

2
64

3
75

0:64
0:26
0:1

2
64

3
75 ¼

1:935
0:784
0:318

2
64

3
75 ð20Þ

The characteristic value (Eq. (21)) is as follows:

kmax ¼
Xn
i¼1

Awð Þi
nwi

¼ 3:038 ð21Þ

Finally, a consistency check (Eqs. (22) and (23)) is performed as
follows:

CI ¼ kmax � n
n� 1

¼ 0:0189 ð22Þ
CR ¼ CI
RI

¼ 0:0327 < 0:1 ð23Þ

The hierarchical judgment matrix satisfies the consistency test,
and the weight is reasonable. The discriminant matrix and consis-
tency check of C-B1 and C-B2 levels are the same as in the above
steps. The calculated value of the final level total ranking consis-
tency test is 0.016 < 0.1, which meets the requirements of the total
ranking consistency test, and the construction of the matrix and
the determined weight are reasonable. Finally, the statistical
weights are summarized (Table 12).
ssible
)

Very possible
(3)

Extremely possible (4)

3 4
6 8
9 12
12 16



Fig. 16. AHP model of the early warning system.
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4.2.3. Construction of the early warning model for mine water inrush
The most important thing in the construction of an early warn-

ing model is the construction of an early warning mechanism. The
general steps of the operation process of the early warning system
are as follows: determine the early warning target; screen and
determine the early warning indicators and their thresholds; ana-
lyze and obtain the single-factor and multifactor early warning
modes; determine the single-factor evaluation value and calculate
the multifactor comprehensive early warning value; and divide the
risk level and warning (Fig. 17).

The final quantitative output of the early warning model is the
risk value. According to the index weight and the risk value in var-
ious situations given by the risk matrix, the final alarm value is cal-
culated (Eq. (24)).

RK ¼ 0:429f z xð Þ þ 0:211f Q xð Þ þ 0:036f T xð Þ þ 0:063f Na xð Þ
þ 0:161f Ca xð Þ þ 0:1f TDS xð Þ ð24Þ

where RK is the risk warning value; fZ(x) the value of the risk
function of the water level in the aquifer; fQ(x) the value of the risk
function of mine water inflow; fT(x) the value of the water temper-
ature risk function; fNa(x) the value of the Na+ concentration risk
function; fCa (x) the value of the Ca2+ concentration risk function;
fTDS (x) the value of the TDS risk function.

The multi-index comprehensive risk warning level is also
divided into four levels: blue, yellow, orange and red warnings,
corresponding to low risk, medium risk, high risk and extremely
high risk. When 1 � RK＜3, a blue warning will be issued; when
3 � RK＜7, a yellow warning will be issued; when 8 � RK＜12,
an orange warning will be issued; when 12 � RK � 16 or there is
a certain indicator of abnormality and the danger level will be
reached within 3 h, a red warning will be issued (Table 13).
4.3. Multifactor intelligent warning model for real-time monitoring of
mine water inrush

4.3.1. BP neural network design
The water inrush intelligent early warning system based on

machine learning can provide further help in the coal mine water
inrush early warning and is an important part of intelligent mines.
From 2014 to 2017, 91 sets of data can be found for 6 indicators
10
where any indicator is abnormal, and these data sets are used to
learn and train the BP neural network and predict.

The indicators of the BP neural network are the input layer, hid-
den layer and output layer. Input layer: There are 6 main influenc-
ing factors of the early warning system, and the number of input
layer nodes is set to 6. Hidden layer: After calculation and error
analysis, the hidden layer of the early warning system is a
double-layer hidden layer with 5 nodes. The transfer function of
the hidden layer uses the default sigmoid type function. Output
layer: The output value is the coal seam water inrush risk value,
so the number of nodes in the output layer is 1. The value of the
output layer is any real number, so the transfer function is selected
as the default purelin type function.

The learning and training functions are the learngdm and
trainlm functions in MATLAB to ensure their accuracy. The number
of training process iterations is set to 1000, the learning rate is set
to 0.1, and the error target is 0.04. In summary, MATLAB is used to
build a 6–5-5–1 four-layer BP neural network early warning sys-
tem (Table 14).

In the detailed settings of the neural network, when the moni-
toring values of the borehole water level, face water inflow, water
temperature and water chemistry indicators are within the abnor-
mal threshold range, all data will not enter the early warning sys-
tem of the neural network. When the above indicators are
abnormal and a hierarchical early warning stage is indicated, the
values of ZI, QI(n), TI, QI(TDS), QI(Na+) and QI(Ca2+) are used as
the input layer values, and the output layer values of the training
data are all the risk values given by the coal mine water prevention
expert based on the evaluation matrix.

4.3.2. BP neural network training and prediction
A total of 91 data sets were used to create the BP neural net-

work model. Seventy data sets—nearly 80% of the total data
sets—were used to train and fit the model, while the remaining
20% (21 data sets) served as the unseen data to test the validity
of the trained and fitted model. The data were divided based on
the hold-out cross-validation technique with percentage divisions
[39,40]. The training ended when the number of training iterations
reaches 1000 or the network error performance was less than 0.04.
Finally, the neural network reached the requirements when the
training reached step 6 (Fig. 18).



Table 12
Weights table of the risk warning indicator system.

Index system Index level Bi-A weight Warning indicators Ci-B weight Ci-A weight

Monitoring and early warning evaluation of mine water inrush Level Ⅰ 0.64 Water level 0.67 0.429
Mine water inflow 0.33 0.211

Level Ⅱ 0.26 Water temperature 0.14 0.036
Na+ concentration 0.24 0.063
Ca2+ concentration 0.62 0.161

Level III 0.1 TDS 1 0.1

Fig. 17. Flow chart of the early warning model.

Table 14
Parameter summary table of the BP neural network.

The main parameters Value or type

Number of input layer nodes 6
Number of hidden layers 2
Number of hidden layer nodes 5
Number of output layer nodes 1
Hidden layer transfer function Sigmoid
Output layer transfer function Purelin
Number of iterations 1000
Error target 0.04
Learning rate 0.1
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To determine the reliability of the training results, by analyzing
the consistency of the neural network simulation risk value (Y) and
the actual risk value (T), the linear regression equation of the train-
ing phase is Y = 0.96 T + 0.013 with R = 0.98703, and the network
training is reliable (Fig. 19). The early warning results of the
remaining 21 sets of data (Table 15) are basically the same as those
of the linear early warning system (Fig. 20), but the alarm judg-
ments of the 3rd, 13th, 18th and 19th groups are quite different.
Although the results of the 3rd, 18th and 19th intelligent early
warning groups were high, they also played an early warning role.
The test value of the neural network has a relatively small error,
and the correct rate of early warnings is as high as 95.2%.
5. Discussion

5.1. Discussion of the validity of the hydrochemical index

In the previous sections, the quantitative method for the real-
time monitoring and early warning indicators for mine water
Table 13
Early warning classification of comprehensive early warning models.

Risk level Low risk Medium risk High risk

Warning level Blue alert Yellow alert Orange alert
Grading standards 1 � RK＜3 3 � RK＜8 8 � RK＜12
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inrush were explained in detail, and a water inrush early warning
model was established. However, in the water inrush early warn-
ing model, hydrogeochemical indicators are selected according to
the difficulty of real-time monitoring and the effective reflection
of water inrush, which is of great significance to the construction
of the model. In terms of effectiveness, according to Tables 1–3,
it is obvious that cations are highly distinguishable among the
Extremely high risk

Red alert
12 � RK � 16, or a certain indicator reaches the high risk level within 3 h



Fig. 18. Neural network training results.

Fig. 19. Consistency diagram of the simulation training and actual results.

Table 15
BP neural network test results table.

Number AHP calculation output Predictive out

1 3.751 3.228
2 1.824 1.729
3 1.917 2.437
4 7.862 7.233
5 6.996 6.363
6 7.457 6.452
7 3.253 3.076
8 3.043 3.795
9 7.176 7.539
10 2.624 3.089
11 9.154 9.581
12 5.733 5.922
13 2.253 1.835
14 7.587 5.559
15 5.467 5.748
16 4.384 5.361
17 4.545 5.101
18 7.378 8.491
19 1.917 2.717
20 2.893 3.571
21 3.143 3.758

Fig. 20. BP neural network test results.
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three types of water. In terms of real-time monitoring, Na+, TDS
and Ca2+ have more reliable sensors, while other ions (such as
Mg2+) need to be sampled and tested. Therefore, the hydrogeo-
chemical indicators are Na+, TDS and Ca2+.

In fact, in the monitoring of the Renlou coal mine adjacent to
this study area, Ca2+ had a significant increase after large-scale Tai-
hui water inrush (Fig. 21). Therefore, the hydrogeochemical char-
acteristics after water inrush in the study area also tend to be
similar to the source of the water inrush. When Taihui water
inrush occurs, because Taihui water has lower TDS and Na+ but
higher Ca2+, it is very likely that TDS and Na+ will decrease and
Ca2+ will increase. In addition, compared with TDS and Na+, Ca2+

has a more obvious change trend after water inrush, and there
are actual monitoring cases for the change in Ca2+. Therefore, in
this water inrush warning model, the effectiveness of Ca2+ is higher
than that of Na+ and TDS.
5.2. Limitations

The establishment of a real-time monitoring and early warning
system for coal mine water inrush is a complicated process.
Although the indicators and quantitative methods have been
determined on the basis of considering the real-time monitoring
put Error Neural network predicts alarm

0.523 Blue alert
0.095 Yellow alert
0.520 Yellow alert
0.629 Yellow alert
0.633 Yellow alert
1.005 Yellow alert
0.177 Yellow alert
0.752 Yellow alert
0.363 Yellow alert
0.465 Yellow alert
0.427 Orange alert
0.189 Yellow alert
0.418 Blue alert
2.026 Yellow alert
0.281 Yellow alert
0.977 Yellow alert
0.556 Yellow alert
1.113 Orange alert
0.800 Yellow alert
0.678 Yellow alert
0.615 Yellow alert



Fig. 21. Ca2+ curve after a water burst in the Renlou coal mine.
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and effectiveness of the indicators, there are still many areas for
further improvement in the future.

First, the indicators and specific quantitative values selected at
this time are mainly for the early warning of water inrush from the
Hengyuan coal mine. However, after combining the actual condi-
tions of other coal mines, indicator selection and quantitative
methods can be used to establish an early warning system. There-
fore, future work will analyze the quantitative standards of early
warning indicators for multiple mines to summarize the universal
applicability of indicator quantification. Second, the small BP neu-
ral network early warning system data set is the biggest limitation.
Although water inrush cases in the study area had been collected
for more than ten years, the improvement in the early warning sys-
tem is far from sufficient. In the future, to improve the early warn-
ing system, it is important to use monitoring data to discuss the
neural network learning rate and the number of training sessions.

In summary, the universality of index quantification and the
optimization of intelligent systems are not extensively considered
in the current research. Therefore, future research should urgently
address these two aspects to ensure the safe coal mining.

6. Conclusions

(1) A single indicator hierarchical early warning identification
model for each indicator is established. Hierarchical early
warning is mainly divided into 4 levels, and specific quanti-
tative methods for each level are proposed for the first time.

(2) A multifactor linear warning model for water inrush from
the mine floor is constructed. Using AHP, the weights of
the aquifer water level, mine water inflow, water tempera-
ture, Na+, Ca2+ and TDS are calculated to be 0.429, 0.211,
0.036, 0.063, 0.161 and 0.1. The warning model is finally
obtained as RK = 0.429fZ(x) + 0.211fQ(x) + 0.036fT(x) + 0.063fNa

(x) + 0.161fCa (x) + 0.1fTDS(x).
(3) An intelligent learning and early warning model of multifac-

tor mine floor water inrush is constructed. The training
results and the actual calculation results have a high degree
of fit and low error, and the correct rate of early warnings is
as high as 95.2%. This early warning model realizes the intel-
ligent development of coal mine water inrush and provides a
reference for future deep learning of water inrush early
warning systems.
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