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Abstract
Mines result in land use and land cover (LULC) change due to degradation of natural resources and establishment of new 
infrastructure for ore extraction and beneficiation. The present study was carried out to, with objectives, (1) character-
ize LULC change (from 1975 to 2017) in Khetri copper mine region, (2) spatial distribution of pollution indices and (3) 
spectral response of elemental concentration of soil and groundwater using Landstat and ASTER satellite data. The study 
was designed to fulfil the objectives and for the same NDVI values were calculated for LULC classification and generated 
maps were analyzed for landscape pattern. Spatial distribution of pollution indices calculated using geochemical data of 
soil and groundwater was plotted to understand the impact of contamination on landscape pattern. The correlation of 
spectral response of Landstat bands with heavy metals concentration was plotted to assess their possible use in quanti-
fication of heavy metals. Results show constant increase in settlements, mines and open area while vegetation cover has 
decreased. Landscape and class level metrics (number of patch, patch density, aggregation index and landscape shape 
index) indicate increase in the fragmentation of landscape in recent years. Shannon’s Evenness Index indicates increase 
in uniformity in landscape and it is attributed to loss of vegetation and agriculture patches. Pollution indices, Pollution 
Load Index for soil is high near the overburden materials and Index of Environmental Risk  (IER) and Contamination Index 
for ground water is high near abandoned mines. Spectral bands 5 and 6 (SWIR 1) show significant negative correlation, 
and 9 (Cirrus) shows significant positive correlation with metal concentration in soil and water suggesting the possible 
use of remote sensing in assessment of metal concentration at ground level. Thus, it can be concluded that mines signifi-
cantly influence the landscape pattern and remote sensing could be used for the assessment and predication of heavy 
metal contamination at broader scale in a cost-effective way.
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1 Introduction

Mines are important for any economy but have significant 
adverse impact on environment [1]. Extensive mining 
leads to changes in land use and land cover (LULC) [2, 3]. 
Pollutants and waste generated from the mines are one of 
the major causes for deterioration of soil and water quality 
[4] which disturbs the ecosystems [5] and thus landscape. 
The illegal mines also put pressure on the environment 
and results in degradation of forest cover [6]. Mines lead 

to changes in landscape through land transformation, 
habitat loss and fragmentation. In opencast mining defor-
estation, urbanization and mine expansion lead to LULC 
changes [7]. Impact of underground mines on landscape 
is slow but has significant influence on vegetation [8, 9]. 
The land subsidence due to underground mines leads to 
adverse ecological impacts specifically on agriculture [10].

Excavation of ore generates huge quantities of heavy-
metal-enriched mining waste. Mining with 1 wt% of ore 
result in 99% of the total quantity of excavated ore into 
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waste. Huge piles of mining waste on exposure to oxy-
gen and water generate acid mine drainage (AMD) which 
decreases pH and facilitates the leaching of heavy metals. 
High concentration of heavy metals under low pH con-
ditions leads to the contamination of surroundings and 
poses health risk to human [11]. The extent and intensity of 
heavy metal contamination due to mining waste is signifi-
cant in nature. Excessive presence of heavy metals (thresh-
old values for Cu = 19.96, Zn = 49.04, As = 14.05, Sn = 0.19 
and Cr = 89.80 mg/kg) in soil inhibits the growth of plants 
[12]. However, the ecological disturbances caused by open 
pit mine and waste dumps are different from each other. 
It is observed that ecology surrounding the open pit mine 
landscape is severely impacted compared to dumping 
landscape which has moderate disturbances [13]. Open pit 
mines cause serious adverse impact on the environment 
[14] and change in LULC is due to decrease in vegetation 
cover caused by mining activities [15].

The changes in landscape patterns for more than a cen-
tury could be divided into major five processes namely 
urbanization, intensification of agriculture, abandonment, 
deforestation, and afforestation in the mining region [3]. 
The displacement of population for mines or abandon-
ment of mines after the extensive ore extraction is also 
reflected in landscape patterns. The future projection of 
LULC patterns on the basis of current LULC classification is 
also feasible to predict. The future projection of landscape 
pattern would be helpful in managing the land resources 
in sustainable manner for ecological restoration and pro-
tection [16, 17]. Apart from LULC, calculation of vegetation 
fractional coverage (VFC) and vegetation index (VI) using 
remote sensing images is found effective in assessing the 
mining impact on soil and vegetation cover [18].

Construction of ore beneficiation units along with roads 
on forest land results in deforestation and are potential 
changes observed on the mining landscape. Establish-
ment of tailing dams, waste rocks dumps, effluent treat-
ment plants, water storage ponds and built-up are the vis-
ible changes in landscape pattern caused by the mines [19, 
20]. Spatiotemporal characterization of mining landscape 
indicates the presence of open pits and waste dumps in 
place of vegetation cover [21, 22]. In the current scenario 
of urbanization and industrialization, the environmental 
protection is major concern for society. It is important to 
understand the LULC changes in mining region for conser-
vation of natural resources and environmental protection.

Tropical and developing countries often report 
changes in landscape pattern and processes due to 
human interventions [2, 23, 24]. Changes in diverse land-
scape are easily visible [25, 26], and their impacts are eas-
ily detected [27]. However, in the semi-arid regions, as 
the landscape looks homogenous with less diversity, the 
magnitudes of impact are not visible [28, 29]. Thus, often 

it is difficult to assess the reason for landscape fragmen-
tation in semi-arid regions which are covered with low 
vegetation cover. The assessment of LULC changes in 
semi-arid region due to underground mines needs fur-
ther research for better understanding the impacts of 
mines landscape pattern.

The impacts of open pit and underground mines on 
landscape pattern would be different in nature. Operation 
of open pit mine in the forest land result in deforestation 
and the impacts are direct in nature. However, in case of 
underground mines most of the loss of vegetation cover 
is due to degradation of soil and water resources or sub-
sidence of land. Dumping of mining waste and establish-
ment of ore processing plant in forest land would results 
in deforestation in case of underground mines. Thus, the 
impacts of underground mines on the vegetation cover 
are visible in long term [9].

Mining for petroleum products, stones and minerals 
is one of the known commercial activities in the semi-
arid region of India [30–32]. But the impact of these on 
the landscape patterns and soil and water contamina-
tion is the least studied [33]. Heavy metal contamina-
tion of soil and water due to mining is well reported by 
many researchers from different parts of the world [34, 
35]. Monitoring and assessment of environmental con-
taminates require extensive laboratory work and time. 
The aerial extent of large-scale mines is more compared 
to small-scale mines; hence LULC changes due to large-
scale mines are easily detected with satellite imaginary 
than small-scale mines. For the assessment of LULC due 
to small-scale mine, a high-resolution satellite imagery 
data is required. It is observed that a high degree of accu-
racy could be achieved for the assessment of LULC change 
caused by small scale and illegal mines through the appli-
cation of deep convolutional neural network model using 
Sentinel-2 multispectral satellite imagery [36].

Bands of satellite imagery are used to develop the mod-
els for the predication of values of water quality parameter. 
The models developed using the bands of Landsat 8 and 
Sentinel-2 data are found more suitable for the surface 
water quality assessment compared to ASTER and SPOT 
6 [37]. Satellite imagery with higher number of bands is 
more suitable for the models. Optically active water qual-
ity parameters such as turbidity, blue–green algae phyco-
cyanin and chlorophyll-a content could be assessed with 
high accuracy using the satellite imagery for fast and easy 
assessment [38]. Statistical relation between the ASTER 
bands and water quality parameters (temperature, pH, 
total dissolved solids, salinity, total alkalinity, electrical 
conductivity, ortho-phosphorus and total organic car-
bon) is found suitable for their accurate predication and 
generation of spatial distribution maps through regression 
analysis [39].
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Heavy metals are minor constitutes of soil, so their 
detection using spectral signatures is a difficult task. Heavy 
metal concentration should exceed 4 ppm to be detected 
from spectral signature [40]. Heavy metals show strong 
correlation with organic matter, and their relation can be 
used for remote prediction and estimation of heavy metals 
[41, 42]. But the concept is not applicable to sites having 
low content of organic matter like arid or mining areas. 
Correlation between the pixel values of satellites imagi-
nary and analyzed parameters in soil and water is continu-
ously being monitored for the development of suitable 
predication model. Nadari et al. [43] reported that the 
assessment and predication of heavy metals around the 
contaminated sites using stepwise multiple linear regres-
sion and neural network-genetic algorithm model based 
on visible/near-infrared reflectance of electromagnetic 
range of satellite imagery provides reliable information. 
Thus, relation between satellite spectral response and 
elemental concentration in soil is needed to be study.

Heavy metals also show strong correlation among 
themselves and the phenomena could be used for the 
assessment of heavy metals [44, 45]. The heavy metals also 
have strong correlation among themselves, i.e., two heavy 
metals might be found in association with natural condi-
tions. But correlation among heavy metals is site specific 
and depends upon their source. Thus, the applicability of 
this phenomena at a global level is debatable. Sensitivity 
of spectral bands is metal specific and waveband selec-
tion is important criteria for assessment of metal content 
in soil. Studies have suggested different wavebands for 
different metals such as wavebands centered about 460, 
1400, 1900 and 2200 nm are more sensitive for As and Cu 
[45] and bands centered around 838, 1930 and 2148 nm 
are sensitive for Pb content.

Application of LULC in assessment of environmental 
impacts of mines is fast and economical compared to other 
impact assessment methods [46]. It also generates maps 
indicating the mining impacts on environment which is a 
cost-effective method compared to field-based monitor-
ing. The classified LULC maps could be used to understand 
the change in landscape pattern. Heavy metal contamina-
tion of soil and water is commonly found in the mining 
region so the spatial distribution of heavy metals using 
the geospatial tools has been proposed to done to under-
stand the impact of contamination on landscape pattern. 
Field-based estimation of heavy metals is a lengthy pro-
cess; hence, correlation of geochemical data with spectral 
reflectance of Landstat data for fast identification is pro-
posed. The relation would open door for further research 
in inventing the estimation method for heavy metal using 
the spatial tools. With this background, the present study 
was designed to characterize Khetri copper mine envi-
ronment. The objectives of the study are to (i) assess the 

changes in LULC between 1975 and 2017, (ii) assess the 
impacts of mines using landscape metrics and pollution 
indices and (iii) to estimate relationship between satellite 
spectral response and elemental concentration in soil and 
groundwater.

2  Study area

Khetri copper complex (KCC) mines are located in north-
western part of India and are active since 1973 (Fig. 1). 
These are located at an altitude of 550 m above mean sea 
level with geographic location, 28°04′21.17′′ north latitude 
and 75°49′23.29′′ east longitude. The area falls in sub-trop-
ical, semi-arid region with mean annual rainfall around 
500 mm. The region is covered with sparse vegetation, 
and the major species include Prosopis cineraria, Zizipus 
jujube, Prosopis juliflora, Azadirachta indica and Vachellia 
karro. Agricultural is practiced in two major seasons Kharif 
(July–October) and Rabi (October–March).

The KCC belt extends about 80 km in length from Sin-
ghana (Jhunjhunu district) in the northeast to Sangarva 
(Sikar district) in the southwest. The KCC mines are active 
at Khetri and Kolihan and not at Chaandmari, which is 
abandoned since 2002. All mines at KCC are underground 
except Chaandmari, which cover small area. The mine gen-
erates huge quantity of sulfide rich waste such as tailings 
and overburden materials. For the last few decades, a huge 
quantity of waste is being dumped openly in the environ-
ment of Khetri covering a large area. In the region, dust 
storms blow from south-western direction during sum-
mer (May–June) and from northwestern direction dur-
ing winter (December–January). The tailings by virtue of 
their fine-grained nature are easily carried away to distant 
places by these winds. In addition, metals can easily be 
leached from these dumps and contaminate the surface 
and groundwater.

3  Materials and methods

To assess changes in LULC after the implementation of 
mines in semi-arid region, satellite images of 1975 (Land-
stat-MSS) and 2002, 2012 and 2017 (Terra-ASTER) were 
downloaded from the United States Geological Survey 
(USGS) earth explorer website (https ://earth explo rer.usgs.
gov/). The vegetation cover depends upon the intensity 
and duration of rainfall so images of monsoon season 
were avoided. The satellite images of pre-monsoon sea-
son (March) were selected for classification. Details of the 
satellites images used are given in Table 1.

For image pre-processing and classification, ERDAS 
9.1 software was used. Normalized Difference Vegetation 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:174 | https://doi.org/10.1007/s42452-021-04183-6

Fig. 1  Map showing location of study area and distribution of mines and settlements

Table 1  Details of satellite 
images used for LULC mapping

* Bands used in the present study

Satellite Date Path/Row Spatial
resolution (m)

Swath
(km)

Spectral
resolution (µm)

Landstat
MSS
(level 1)

02 March 1975 158/41 80 185 Band 1 (0.5–0.6)
Band 2 (0.6–0.7)*

Band 3 (0.7–0.8)*

Band 4 (0.8–1.1)*

Terra
ASTER
(level 1 T)

18 March 2002 147/41 15 60 Band 1 (0.52–0.60)*

Band 2 (0.63–0.69)*

Band 3 (0.76–0.86)*

Band 4 (1.60–1.70)
Band 5 (2.14–2.18)
Band 6 (2.18–2.22)
Band 7 (2.23–2.28)
Band 8 (2.29–2.36)
Band 9 (2.36–2.43)
Band 10 (8.12–8.47)
Band 11 (8.47–8.82)
Band 12 (8.89–9.27)
Band 13 (10.25–10.95)
Band 14 (10.95–11.65)

13 March 2012
04 March 2017
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Index (NDVI = NIR − R/NIR + R) images created from false 
color composite (FCC) (bands 432 for LandstatMSS and 
321 for ASTER) were used for classification. NDVI image 
was more useful in differentiating vegetative areas from 
the non-vegetative areas. The NDVI images were clustered 
using Iterative Self Organizing Data Analysis (ISODATA) 
technique (clusters = 100, iteration = 24, and convergence 
level 0.99). Buffer shape file of radius 10 km was over-
laid on the NDVI image covering the mining region and 
downwind direction of mines. The scarce vegetation with 
diverse geology could result error in LULC classification; 
hence, ground truth points were used for the post-classi-
fication refinement of the misclassified pixels.

NDVI-based LULC classification is widely used for spati-
otemporal differentiation of vegetation cover from other 
classes [34–37, 47–50]. The calculated values of NDVI 
range from ( −)1 (no vegetation) to ( +)1 (vegetation) [51]. 
Low values of NDVI indicate the bare soil and high val-
ues of NDVI indicate the dense vegetation cover. NDVI are 
used for understanding the changes in vegetation cover 
depending on the chlorophyll content and other factors 
related to plant growth [52]. The study area is covered with 
scattered vegetation and it is difficult the vegetation cov-
ers from other classes. Mines are well known for adverse 
impacts on the vegetation cover [53, 54]; hence, for the 
classification NDVI values were used.

For LULC, the clusters were classified into seven classes 
namely mines, settlements, agriculture, current fallow, 
open area, vegetation and water body. The pixels with 
highest NDVI values were classified as agriculture. Min-
ing infrastructure, tailings and overburden material are 
included in mine class. The pixels with medium NDVI were 
classified as vegetation, and it includes the areas covered 
with the high density of local and invasive trees. The low 
NDVI pixels were classified as open area with very low 
density of vegetation. The accuracy assessment was car-
ried out using random points covering all mapped classes. 
Overall accuracy and kappa coefficient were computed. 
The overall accuracy varies from 83% (1975) to 86% (2017) 
with kappa coefficient from 0.81 to 0.85. The accuracy 
assessments for 2002 and 2012 are 85 and 84% with kappa 
coefficients 0.85 and 0.83, respectively, being observed.

The landscape metrics were calculated using Fragstats 
4.2.1 software [55] (Table 2). Fragstat is frequently being 
used to detect landscape fragmentation on the basis of 
landscape metrics [56, 57]. These are combination and 
arrangement of patch of different shapes and sizes [58]. 
Seven pattern indices namely number of patches (NP), 
edge density (ED), landscape shape index (LSI), patch den-
sity (PD), aggregation index (AI), contagion index (CON-
TAG) and Shannon’s evenness index (SHEI) were used at 
landscape level. Seven pattern indices namely AI, ED, NP, 
core area (CA), total edge (TE), largest patch index (LPI) 

and interspersion juxtaposition index (IJI) were used at 
class level.

Geochemical data for soil and groundwater calculated 
by Punia and Siddaiah [59] and Punia et al. [33] were used 
for representing the spatial distribution of pollution indi-
ces. The extent of pollution load in soils is evaluated using 
Pollution Load Index (PLI) and in groundwater using Con-
tamination Index (CI) and Index of Environmental Risk  (IER). 
PLI is to assess the number of times by which overall metal 
concentration exceeds the background concentration in 
particular sample. CI evaluates the enrichment of metals 
with respect to maximum permissible limits of BIS (2012). 
 IER predicts the probability of the occurrence of the nega-
tive impact on the environment by means of specific con-
taminations. Map showing the spatial distribution of pol-
lution indices for soil and groundwater was plotted using 
ArcMap 10.1 software.

Metal concentration in soil and groundwater in the 
study area as reported by Punia et al. [33], and Punia and 
Siddaiah [59]) was used. The results of above study were 
used because concentrations of different metals show 
spatial variation. The satellite images (Landstat 8, obser-
vation dates 15th September and 23rd March, 2015) within 
the 2–3 days of the sampling date (19–21st March and 
17–18th September, 2015) mentioned by above authors 
were downloaded from the USGS earth explorer website 
(https ://earth explo rer.usgs.gov/). The correlation between 
the pixel values of different bands of satellite images and 
the chemical composition of soil and groundwater was cal-
culated to understand the response on the satellite data. 
Methodology flowchart indicating all the steps process is 
shown in Fig. 2.

4  Results and discussion

Loss of vegetation cover or agricultural land because of 
opencast mining is well studied [60]. The impact of under-
ground mine on LULC change is less studied. In the follow-
ing sections, LULC change due to underground mines in 
semi-arid region is being discussed.

5  Land use and land cover (LULC) change

The area covered by mines increased from 1.02 to 
1.96  sqkm between 1975 and 2002 with a rate of 
0.02 sq km per year. The Kolihan and Khetri mines further 
showed increase in the rate from 0.02 to 0.04 between 
2012 and 2017 (Table 3). Both the mines are underground 
so their expansion is not visible spatially. But increment in 
the quantity of overburden and tailings are proportional 
to the expansion of the mines. Thus, increase in the area 

https://earthexplorer.usgs.gov/
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Table 2  List of landscape metrics used for the study

a Is Class level and
b Is Landscape level metrics

Metrics Description Formula

Number of patches (NP)a,b Total number of patches in landscape or class NP = ni
ni = number of patches of patch type i

Edge density (ED)a,b ED is the ratio of edge to area
ED =

∑mn

k = 1
eik√

A

eik = total length (m) of edge in landscape involving 
patch type (class) i

A = total landscape area  (m2)

LSI =
0.25

m∑
k = 1

eik

√
A

Landscape shape index (LSI)b LSI is the total length of edge of class

LSI =
0.25

m∑
k=1

eik∗

√
A

eik
* = Total length (m) of edge in landscape between 
patch types * (classes) i and k

A = total landscape area  (m2)

Patch density (PD)b Number of patches per 100 hectares PD =
ni

A
(10.000)(100)

ni = number of patches in the landscape of patch type 
(class) i

A = total landscape area  (m2)

Aggregation index (AI)a,b AI shows the aggregation or clumping of patches into 
a single compact patch AI =

�
m∑
i = 1

�
gi

max→gi

�
Pi

�
(100)

giin = number of like adjacencies (joins) between pixels of 
patch type (class) i

max-gii = maximum number of like adjacencies (joins) 
between pixels of patch type (class) i

Pi = proportion of landscape comprised of patch type (class) i

Contagion index (CONTAG)b Contagion measures the extent to which patch types 
are aggregated or clumped; higher values indicates 
large, contiguous patches, whereas lower values 
generally characterize landscapes with many small 
and dispersed patches

CONTAG = 1 +

⎡
⎢⎢⎢⎢⎢⎣

i∑
i=1

m∑
m= 1

⎡
⎢⎢⎢⎣
Pi×

gik
m∑

k = 1
gik

⎤
⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎣
ln

⎛
⎜⎜⎜⎝
Pi×

gik
m∑

K = 1
gik

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

2 lnm

⎤
⎥⎥⎥⎥⎥⎦

(100)

Pi = proportion of the landscape occupied by patch type 
(class) i

gik = number of adjacencies (joins) between pixels of 
patch types (classes) i and k

m = number of patch types (classes) present in the landscape

Shannon’s evenness index (SHEI)b SHEI is a measure of patch distribution and abun-
dance. High values of SHEI represent more evenness 
of landscape. It also indicates that mixed class pixels 
are changed into single class pixels

SHEI =
−
∑m

i = 1 (Pi−ln Pi)
ln m

Pi = proportion of the landscape occupied by patch type 
(class) i

m = number of patch types (classes) present in the 
landscape

Core area (CA)a Interior area of patches
CA = aij

(
1

10,000

)

aij = core area (m) of patch ij based on specified edge 
depths (m)

Total edge (TE)a Absolute measure of total edge length of a particular 
patch type

TE = E
E = total length (m) of edge in landscape

Largest patch index (LPI)a LPI is a percentage of total landscape area covered by 
the largest patch and it is measured in percentage

LPI =
max(aij)

A
(100)

aij = area (m) of patch ij
A = total landscape area  (m2)

Interspersion juxtaposition index (IJI)a IJI measures the patch adjacency

JI =

−
m∑

K = 1

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

eik
m∑
k=1

eik

⎞
⎟⎟⎟⎠
ln

⎛
⎜⎜⎜⎝

eik
m∑

k = 1
eik

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

ln(m−1)
(100)

eik = total length (m) of edge in landscape between 
patch types (classes) i and k

m = number of patch types (classers) present in the 
landshape
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of underground mines can be attributed to the increase 
in quantity of waste generated along with the mining 
infrastructure. Settlements show a consistent increase in 
the area, i.e., 0.03, 0.07 and 0.09 sq km during 1975–2002, 
2002–2012 and 2012–2017, respectively. In the mining 
region, the construction land increases prominently and 
impacts the pattern of ecological system [10]. The wells are 
getting dried off continuously and in some parts ground-
water is saline which is not suitable for drinking and agri-
cultural purposes. Despite of drop-off in resources (water 
and agricultural productivity) in the region, the consistent 
increase in settlements is indicating expansion of human 
population. Thus, the population is not migrating despite 
of degradation of resources.

Earlier studies have reported significant changes in 
natural landscape due to surface mines [60, 61]. Mines 
are underground at the KCC; hence, their expansion is not 
visible on the ground. On comparing the rate of change 
among settlements and mines, we observed that the rate 
of change is high for settlements compared to mines 
(Fig. 3) indicating expansion of human settlements and 
urban areas in the region. The emergence of mines and 
related activities enhance the expansion of urban settle-
ments [62]. LULC are important to carry out for environ-
mental protection, as extensive change in LULC could 
lead to degradation of land and environment [50]. The 
extraction of ore from the earth already disturbs the upper 
surface of soil and the impact could be much of greater 
intensity compared to industrialization and urbanization.

Agricultural land covered 29.56 and 35.87 sqkm of area 
in 1975 and 2002, respectively. The annual rate of change 
in agricultural land cover is low (0.01) between 1975 and 
2002. While, the annual rate of change of agricultural land 
cover shows increasing trend (0.03) during 2002–2012. 

This is attributed to construction of new wells in this time 
period, as reported by the locals. During 2012–2017, the 
agricultural land cover decreased with a rate of 0.20. The 
increase in salinity along with declining groundwater 
resources is the reason for decrease in agricultural out-
put. The agricultural fields present in the close proximity 
of mines are converted to open area between 2012 and 
2017. This could be attributed to depletion of groundwater 
resources or increase in salinity of groundwater.

Vegetation of the region has decreased continuously 
and its area reduced from 162.23 to 91.71 sqkm since 
1975. The undulating terrain of the region is covered with 
local and invasive trees and is classified as the vegetation 
class. The declining groundwater level along with increas-
ing mining activities might further accelerate reduction 
rate of vegetation cover in the semi-arid conditions (high 
temperature and low precipitation). Decreasing trends of 
vegetation cover in the study area show similarity with 
results from other studies carried out by Zhang et al. [18] 
and Sonter et al. [7]. High concentration of metals could 
adversely affect the vegetation and other associated 
processes in the region. The health of plants is adversely 
affected by high concentration of metals particularly Cu 
[63, 64]. The decrease in vegetation is observed in the sur-
rounding area of Ajit dam reservoir between 2012 and 
2017. The reservoir dried in 2017 and drying of reservoir 
could be the reason for the decrease in vegetation. While, 
open area increased continuously from 108 to 164 sqkm 
from 1975 to 2017. In the semi-arid regions, recovery of 
vegetation takes the longest time [65].

Mines consume huge quantities of water during ore 
processing [66], and the world over copper mining alone 
consumed ~ 1.3 billion cum of water in 2006 [67]. The area 
covered by surface water bodies decreased with a rate of 

Fig. 2  Methodology flowchart
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0.05 and 0.02 during 1975–2002 and 2002–2017, respec-
tively, and vanished in 2017. Hence, policies should be 
implemented for the proper management of groundwater 
resources. The area lies in semi-arid region, and the degra-
dation of surface water bodies is an alarming situation for 
the conservation of natural resources. Depletion of water 
resources directly and indirectly influences the vegetation 
cover. Interestingly LULC study by Grari and Naryana [68] 
and Obodai et al. [69] shows the rise in land covered with 
water due to its release from mines.

LULC are efficient methodology in assessing the land 
transformation due to mines. In the coal field of Godavari 
watershed basin, southern India an increase in the infra-
structure for mines along with barren land and a decrease 
in forest cover is observed [68]. The expansion of open cast 
mines also occupies the surrounding forest or agricultural 
land [70]. Closed forests change to open forest and further 
open forests are transformed into the agricultural land, 
mining area and barren land [69]. LULC also influences the 
water quality at regional level [71].

6  Landscape and class pattern metrics

Landscapes are geographical areas consisting of interact-
ing ecosystems and human activity [72]. To investigate 
dynamic changes in landscape patterns, landscape indi-
ces such as index of patch, fragmentation index, diversity 
index, sub-dimension, heterogeneity index and homoge-
neity index could be used [17]. Application of landscape 
metrics in understanding landscape pattern of under-
ground mining is hardly an attempt.

Deforestation and mine waste dumps change land-
scape pattern and fragmentation [17]. The landscape pat-
tern metrics of Muli coal (open cast) mine, China indicate 
that increase in distance from the mines the fragmentation 
of landscape decreases [73]. The identification of impact 
boundary or disturbance ranges using landscape pattern 
responses is important for the implementation of ecologi-
cal restoration strategies. Additionally, land subsidence 
due to underground mines changes and irregularizes 
landscape patterns, i.e., patch length, shape and size [74].

The landscape pattern metrics were computed at land-
scape and class levels. SHEI increased from 1975 to 2017 
indicating increase in the uniformities of landscape (Fig. 4). 
Similarly, landscape pattern of Pingshuo opencast coal 
mine, China a rise in SHEI is observed at landscape level 
change index suggesting increase in degree of fragmen-
tation due to mines [75]. NP and PD increased from 1975 
to 2012 due to increase in fragmentation of landscape 
while decreased from 2012 to 2017 due to loss of small 
sized patches. AI decreased from 1975 to 2017 indicating 
increase in fragmentation. LSI increased from 1975 to 2017 Ta
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indicating fragmentation of landscape. ED increased from 
1975 to 2017 indicating decrease in the length of edges 
compared to area or increase in fragmentation. CONTAG 
increased from 1975 to 2017 suggesting increase in dis-
persion or conversion of larger patches to small patches. 

Alteration in shape, number and edges of patches have 
substantial effect on landscape [56].

Both settlements and mines show similarity in distribu-
tion pattern of indices at class level. It further confirms that 
human activities including underground mines strongly 

Fig. 3  LULCC maps of Khetri region

Fig. 4  Landscape pattern 
metrics
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influence local landscape structure resulting in different 
land uses [76]. CA of mines, settlements and open area 
increased from 1975 to 2017 indicating increase in area 
of these classes (Fig. 5). It decreased in case of vegetation, 
indicating loss or transformation of area covered by veg-
etation to open area. The ED increased for mines, settle-
ments and open area indicating increase in disturbance 
or influence of anthropogenic activities. AI and IJI are 
increasing for both mines and settlements is due to more 
compaction because of increase in their cover area. LPI 
increases for mines, settlements and open area suggesting 
that the area covered by the largest patch area in these 
categories increases.

Landscape and class level metrics suggest the loss of 
small patches and increase in the fragmentation. Similar 
results were observed by some others [2, 77] in the mining 
landscapes. The mining activities have an adverse impact 
on the landscape patterns and thus ecosystem.

7  Spatial distribution of pollution indices

The spatial distribution of pollution indices over the study 
area leads to identify the locations those have high values 
of pollution indices or most affected locations. Pollution 

indices are observed high near the mining sites. Agricul-
tural land those are observed during 1975 and 2002 in the 
northeast direction of mines are transformed into either 
current fallow or open area in 2012 and 2017. The over-
exploitation of groundwater for mines in addition to high 
pollution near the mines could be the reason for trans-
formation of agriculture land to current fallow and open 
area. Extensive pumping of groundwater and LULC change 
encroach the recharge areas impacting recharge rate of 
groundwater [78]. High degree of heavy metal contami-
nation has significant influence on the growth of plants 
because of change in physiological biochemical processes 
[77]. LULC significantly influences the chemical composi-
tion of water resources and alters its quality [71, 79]. The 
forest area and mine waste contributes significantly to 
water quality [22] and proper waste management strate-
gies should be adopted.

Pollution index for soil (PLI-soil) is high near the over-
burden rocks of Khetri mines while the pollution indices 
for water (CI-water and  IER-water) are high near the aban-
doned opencast Chaandmari mine (Fig. 6). It suggests that 
overburden rocks have a high impact on the neighboring 
soils because fine particles overburden rocks are easily 
carried away to distant places by strong dusty winds. The 
abandoned mines have high impact on the groundwater 

Fig. 5  Class pattern metrics for mines, settlements, open area and vegetation classes
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resources as metals get easily leached into the ground-
water on exposure to oxygen and water. Mines disturbs 
physico-chemical properties of soil and degrades its qual-
ity in terms of nitrogen and organic matter even after the 
reclamation [80]. Degradation of soil quality is major prob-
lem in the restoration of ecology or afforestation due to 
low fertility [81].

High content of metals in plants can limit their growth 
[82]. The decrease in the vegetation cover in the wind-
ward direction of mines, overburden rocks and tailings is 
observed. Hence, the present study confirms that the dete-
rioration in quality of soil and water must have resulted in 
loss of vegetation and decline in agricultural production.

8  Satellite variables vis‑à‑vis pollution

Study area is enriched with Fe minerals such as pyrite 
and phyrrohotite [30]. On exposure to oxygen and water 
Fe-rich minerals generate acid mine drainage (AMD) and 
secondary minerals. Fe-rich secondary minerals are diag-
nostic by their spectral signatures [83]. A wide variation 
in the metal concentration (14–2543 ppm Cu) suggests 
different chemical composition of soil. Hence, spectral 
signatures of soil are assumed to vary at different loca-
tions. The concentration of Cu can be estimated in soil 
using spectral reflectance [84]. The application of visible 
and near-infrared reflectance spectroscopy for the fast 

estimation of heavy metals is widely applied [85]; how-
ever, the satellite imagery data available based on spectral 
reflectance for the estimation of heavy metals is neglected 
in the literature.

Spectral behavior or reflectance spectroscopy of soil 
depends on its physical and chemical properties [86]. 
Visible and near-infrared (VNIR) spectroscopy is a feasi-
ble technology for the estimation of heavy metals in soil 
[87, 88] and potential methodology to be applied in field 
conditions [89]. Strong correlation between soil spectral 
reflectance and heavy metal concentration [90] forms a 
foundation for estimation of heavy metals using imagery.

Vegetation gives high reflectance in the Near Infrared 
(NIR) region and it is used for the detection of vegetation. 
Metals (Cu, Zn, Cr, Co and Ni) and FeO show a significant 
negative correlation with bands 5 (NIR), 6 (SWIR 1) and 
9 (cirrus) of the Landsat 8 satellite image of March, 2015 
(pre monsoon) while the correlation is not significant in 
the month of September, 2015 (post monsoon), except 
for Cr ((Fig. 7a). It suggests that in the semi-arid region 
the metal concentration in soil shows a significant correla-
tion in the dry season. While in the post -monsoon season 
due to increase in vegetation cover the correlation doesn’t 
show a significant correlation. Similarly, in ground water 
the concentration of Cu, Co, Ni and Mn shows strong nega-
tive correlation with the band 5 (NIR) during pre-monsoon 
compared to post-monsoon (Fig. 7b). Hence, Cu, Co and Ni 
show good correlation with band 5 (NIR) in both soil and 
groundwater during March.

In soil, metals are present in trace quantity, i.e., in ppm 
and variation in spectral reflectance due to metals seems 
quite impossible with low-resolution data of landsat 8. 
Metal concentration in soil is evaluated with NIR and Mid-
NIR reflectance spectroscopy [91]. Additionally, spectral 
reflectance of NIR (reflectance spectroscopy) depends 
upon soil properties [92] and chemical composition such 
as organic carbon, inorganic carbon and total nitrogen 
[93]. Organic matter has high metal sequestration capac-
ity [94] so soil having high organic matter content would 
also have high metal content. Thus, spectral reflectance 
is attributed to organic carbon including the metal con-
centration of soil. But it would be difficult to apply this 
concept on sites having low content of organic matter like 
in arid regions or mining areas.

The variation of significant spectral responses with dif-
ferent bands at different concentration of Cu, Ni, Co and 
Mn is shown in Fig. 8. The spectral reflectance decreases 
with increase in the concentration of metals such as Cu, 
Ni, Co and Mn in soil. Choe et al. [95] also reported similar 
results that a significant correlation between metal con-
centrations measured at ground level with hyperspectral 
satellite data and suggests use of hyperspectral data in 
mapping metal pollution. Hence, high contamination of 

Fig. 6  Spatial distribution of pollution indices



Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:174 | https://doi.org/10.1007/s42452-021-04183-6

Fig. 7  a Correlation of bands with chemical composition of soil (a) March (b) September b Correlation of bands with chemical composition 
of groundwater (a) March (b) September
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metals in soils is possible to be identified using remote 
sensing data. These results demand further detailed study 
covering larger area using multi-seasonal satellite data. 
The assessment of metals in soil and groundwater is time-
consuming and needs extensive laboratory work so the 
correlation studies between spectral responses and metal 
concentration would facilitate quick assessment of their 
spatial distribution.

9  Future perspective of research

The spectral resolution of Landstat and ASTER is very low 
compared to hyperspectral imagery. The present study 
further demands the application of high-resolution data, 
i.e., hyperspectral imagery in LULC and estimation of heavy 
metals. Hyperspectral sensor collects data in hundreds of 
narrow and adjacent spectral bands depending upon the 
surface materials such as vegetation and ore deposits. The 
numerous narrow bands of hyperspectral sensors provide 
a continuous spectral signature for wide range of electro-
magnetic spectrum and are more sensitive to slight vari-
ations in reflected and emitted energy from the different 
objects. Main advantages of hyperspectral sensing that it 
obtains spatial information in two dimensions and spectral 
information through a number of wavelengths.

Estimated heavy metal concentration and their spectral 
signature could be integrated for the development of esti-
mation method for heavy metal quantification in soil. Stud-
ies have been carried out to develop an estimation model 
for the estimation of heavy metals or trace elements in soil 
using spectrometer and spectral reflectance [84, 96–99]. 
But the feasibility and applicability of estimation models 
are debatable. More research is needed to explore the fea-
sibility of application of spectral reflectance in estimation 
of heavy metals at broader scale using satellite imagery for 
the mining landscape. High concentration of heavy met-
als in overburden rocks may produce pure peaks of spec-
tral signatures. It may enhance the heavy metal detection 
accuracy and could be used for referencing. The further 
research is needed in this aspect as it would further reduce 
the cost and fast method for the estimation of heavy met-
als. The present study is in preliminary in nature and needs 
further research for its application for the fast and easy 
estimation of heavy metals in the contaminated soil.

10  Conclusions

The increase in metal concentration in soil and ground-
water neighboring the mines affects the LULC. Hence, 
change in LULC in relation with the pollution indices 

Fig. 8  Spectral reflectance of concentration of Cu, Ni, Co and Mn in soil
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along with change in pixel values with elemental con-
centration present in soil and groundwater are studied. 
A positive rate of change is found in mines, settlement 
and open area suggesting their spatial increment. The 
vegetation and water bodies show negative rate of 
change or their area decreases. The water bodies pre-
sent till 2012 were vanished in 2017. The declining trend 
in water resources and vegetation is a cause of concern 
from the ecological point of view and needs attention of 
locals and concerned authorities. The fragmentation of 
landscape pattern due to loss of forest and water bodies 
results in change in LULC and which is further acceler-
ated due to contamination of soil and water. The loss 
of agriculture and vegetation near the mines indicates 
the high impact of pollution on landscape as significant 
change is observed neighboring the mines and wind-
ward direction. It further demands a detailed study for 
long duration, i.e., for some decades to understand the 
role of geochemical variation in soil LULC change.

The negative significant correlation between band 
5 of Landstat 8 and metal (Cu, Zn, Cr, Co and Ni) con-
centration of soil and groundwater is found during the 
pre-monsoon suggesting the possible use of NIR band in 
the detection of metal concentration in semi-arid region. 
Decrease in spectral reflectance with wavelength at dif-
ferent concentration of metals demands further detail 
and systematic study for better results. The main draw-
back of the study is the non-availability of huge amount 
of ground level data. However, the study concludes that 
an integrated approach using field observations and 
remote sensing inputs can help in better monitoring and 
assessment of mining landscapes.
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