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Abstract: Karst caves are widely distributed subsurface systems, and the
microbiomes therein are proposed to be the driving force for cave evolution and
biogeochemical cycling. In past years, culture-independent studies on the
microbiomes of cave systems have been conducted, yet intensive microbial
cultivation is still needed to validate the sequence-derived hypothesis and to disclose
the microbial functions in cave ecosystems. In this study, the microbiomes of two
karst caves in Guizhou Province in southwest China were examined. A total of 3,562
bacterial strains were cultivated from rock, water, and sediment samples, and 329
species (including 14 newly described species) of 102 genera were found. We created
a cave bacterial genome collection of 218 bacterial genomes from a karst cave
microbiome through the extraction of 204 database-derived genomes and de novo
sequencing of 14 new bacterial genomes. The cultivated genome collection obtained
in this study and the metagenome data from previous studies were used to investigate
the bacterial metabolism and potential involvement in the carbon, nitrogen, and sulfur
biogeochemical cycles in the cave ecosystem. New N,-fixing Azospirillum and
alkane-oxidizing Oleomonas species were documented in the karst cave microbiome.
Two pcalJ clusters of the B-ketoadipate pathway that were abundant in both the

cultivated microbiomes and the metagenomic data were identified, and their

representatives from the cultivated bacterial genomes were functionally demonstrated.

This large-scale cultivation of a cave microbiome represents the most intensive
collection of cave bacterial resources to date and provides valuable information and

diverse microbial resources for future cave biogeochemical research.
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Importance: Karst caves are oligotrophic environments that are dark, humid, and
have a relative stable annual temperature. The bacteria diversity and their
metabolisms are crucial for understanding the biogeochemical cycling in cave
ecosystems. We integrated large-scale bacterial cultivation with metagenomic
data-mining to explore the composition and metabolisms of the microbiomes in two
karst cave systems. Our results reveal the presence of a highly diversified cave
bacterial community, and 14 new bacterial species were described and
genome-sequenced. In this study, we obtained the most intensive collection of
cultivated microbial resources from karst caves to date and predicted the various
important routes for the biogeochemical cycling of elements in cave ecosystems.
Introduction

Karst caves are subterranean spaces that are mainly formed by the corrosion of
soluble rocks such as limestone, dolomite, and gypsum. As relatively closed and
extreme environments, caves are characterized by darkness, high humidity,
comparably stable temperatures, and oligotrophic conditions (1). Nevertheless, rich
and diversified microbiomes survive in caves (2-6). Culture-dependent and
culture-independent studies have shown that Proteobacteria and Actinobacteria are
abundant, and Chloroflexi, Planctomycetes, Bacteroidetes, Firmicutes, Acidobacteria,
Nitrospirae, Gemmatimonadetes, and Verrucomicrobia also account for a significant
proportion of the total microbial diversities in caves (7-9). Cave microbiomes play
essential roles in the biogeochemical cycling of elements and in maintaining cave

ecosystems. For example, Acidithiobacillus thiooxidans was dominant in the snottites
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from Frasassi cave, and it is considered to provide the major energy and nutrient
inputs for the sulfuric cave ecosystem (10). Other studies (11, 12) have revealed the
diverse genes involved in nitrification, nitrate reduction, and denitrification. Recently,
geobiological studies have suggested that caves contain abundant methanotrophic
microbial communities and may be an atmospheric carbon sink because of the highly
efficient methane oxidation performed by these microbes (13-15). Those conclusions
are largely based on culture-independent studies. However, culture-dependent studies
have shed light on cave microbial evolution and have provided new bioresources for
the discovery of antibiotics. For example, the Bacillus species are involved in
moonmilk and calcite formation (16, 17); the Leptothrix species are associated with
ferromanganese deposits and have been cultivated from cave samples (18, 19); the
Streptomyces strains from cave samples have exhibited strong inhibitory activities
against gram-positive bacteria (20).

China has more than half a million caves that are integrated with the global subsurface
system (21, 22). Many studies of microbial diversity have been conducted using
culture-independent methods (3, 4, 7, 9, 10); however, the intensive cultivation of
bacteria from the karst caves in China and around the world is rare. In this study, we
studied two karst caves in southwestern China. Through intensive bacterial cultivation
from rock, sediment, and water samples, we aimed to (i) discover previously
unknown bacterial taxa and accumulate cave bioresources; and (ii) explore the
bacterial metabolic potentials and involvements in cave biogeochemical cycles. We

obtained 3,562 bacterial isolates and sequenced the genomes of 14 new bacterial
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species. We integrated the newly cultured and available reference microbial genomes
and generated a cultured genome collection for karst cave microbiomes. Furthermore,
the involvement of the cultivated bacteria in biogeochemical C/N/S cycling in karst
cave environments was predicted through functional annotation of the cultured
genome collection and the mining of cultured-independent data from previous studies.
A new type of 3-oxoadipate-CoA-transferases, which was identified from the cultured
microbial genome collection, was biochemically and functionally characterized
through aromatic compound catabolism.

Results

Bacterial cultivation and diversity

Intensive and large-scale cultivation and identification of cave bacteria were
performed (Figure 1a). A total of 3,562 bacterial isolates were obtained, of which
1,408 and 2,154 isolates were obtained from Cave 1 and Cave 2, respectively (Dataset
S1). Cave 1 and Cave 2 are geographically close (500 m apart) and have similar
geological and climatic conditions. Through 16S rRNA gene sequencing and
phylogenetic analysis, the 3,562 bacterial isolates were assigned to 329 species in 102
genera (Dataset S2). Overall, 225 species and 201 species were obtained from Cave 1
and Cave 2, respectively, among which 97 species were found in both caves. The
Shannon index indicates that the cultured bacterial diversities of the two caves
exhibited no significant differences (Student’s #-test, p > 0.05) (Figure 1b).

The bacterial isolates were also analyzed according to their origins in the cave

environments (i.e., rock, water, or sediments). The results revealed that 129 species
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were isolated from rock samples, 155 were isolated from sediment samples, and 133
were isolated from water samples. The Shannon index analysis indicates that the
species diversities were significantly different among the three environments
(ANOVA, F =6.509, p <0.01), but similar distributions were observed when
culture-independent methods were applied (7). The bacterial community in the
sediment samples was more diverse than those in the rock samples (Tukey HSD, p <
0.05) and water samples (Tukey HSD, p < 0.01). Principal coordinates analysis based
on the Brey-Curtis distance revealed that the community compositions of the three
environments were statistically different (PERMANOVA, F = 3.06, R%*=0.135, p=
0.001, dotted line covers the 95% confidence interval) (Figure 1c).

Composition and representativeness of the cultured bacterial collections from the
caves

Taking the isolates from both caves as a whole, the Proteobacteria were the most
frequently isolated, followed by Actinobacteria and Firmicutes. Bacteroidetes and
Deinococcus—Thermus were occasionally obtained (Dataset S2). At the genus level,
the most abundant genera were Brevundimonas (13.7%), Caulobacter (6.3%), and
Bosea (5.5%) of a-Proteobacteria;, Pseudomonas (8.5%) of y-Proteobacteria;
Streptomyces (9.9%) and Rhodococcus (7.3%) of Actinobacteria; and Bacillus (8.8%)
of Firmicutes (Figure 2a).

Taking 97% similarity in the 16S rRNA genes as the threshold for species
differentiation, 166 isolates represented potential new bacterial taxa, accounting for

4.7% of all of the isolates (Table S1). These new taxa belonged to the following

Ausianiun 16uo] 1e 1zoz ‘gz Arenuer uo /610 wise wak//:dny wol) papeojumoq


http://aem.asm.org/

Accepted Manuscripf Posted Online

i)
c
9]
£
c
[¢]

=
>
c

LU

Microbiology

pplied and

Microbiology

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

genera: Arthrobacter, Azospirillum, Brevundimonas, Deinococcus, Massilia,
Methylibium, Nocardioides, Noviherbaspirillum, Oleomonas, Paenibacillus,
Paenisporosarcina, Piscinibacter, Pseudogulbenkiania, Pseudomonas, Solimonas,
Sphingomonas, and Zavarzinia (Figure S1). Notably, the isolates representing
Azospirillum and Oleomonas were repeatedly obtained (Table S1), suggesting that
they were abundant in the cave environments. To further evaluate the
representativeness of our isolates in terms of karst cave microbiomes, 4
culture-independent 16S rRNA gene amplicon datasets (NCBI accession Nos.
PRINA337918, PRINA497480, PRINA588777, and PRINA630353; Dataset S6)
from karst caves were collected and the samples were filtered for quality control.
Among these datasets, samples of PRINA497480 were collected from another 8 karst
caves in southwestern China (7), and their geological backgrounds are very similar to
those of the two caves investigated in this study. These 4 datasets include 153 samples,
and the operational taxonomic units (OTUs) extracted from these samples were
aligned with the 16S rRNA genes of the 3,562 cave isolates (species cut-off value set
as a 97% 16S rRNA gene similarity). The result show that in terms of relative
abundances, the 3,562 isolates represent 28.7% to 31.1% of the sequences on average
and 75% for the highest sample in the 4 datasets (Figure 2b).

Morphology, genome annotation, and denomination of the new bacterial species
Twenty-four representative strains of the 166 potentially new isolates (Figure S1)
were checked for purity, and 16S rRNA gene online alignment was performed using

up-to-date databases (EzBiocloud and NCBI blast). Unfortunately, the bacterial
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isolates representing 7 potential novel species were unable to propagate during the

subsequent cultivation. Isolates K2R10-124 and K2W31S-24 exhibited more than 98%

16S rRNA gene similarity to previously described species. Isolates K1W22B-3 and
K1W22B-8 exhibited 99% 16S rRNA gene similarity to each other, and they were
assigned as representative strains of one new species. The remaining 14 potential new
species were subjected to microscopic observations, phenotype determination using
BIOLOG testing, phylogenetic analysis, and genome sequencing. Their morphologies
and phylogenies are shown in Figures 3a and 3b, respectively, and their proposed
names are listed in Table 1. Detailed descriptions of the new species are provided in
Dataset S3, except for Solimonas fluminis K1W22B-7 and Crenobacter cavernae
KI1W11S-77", which have been previously described (23, 24).

We tested the abilities of these potential new species to assimilate carbon sources. As
is shown in Figure 4a, short-chain fatty acids and amino acids were more frequently
assimilated than carbohydrates, particularly polysaccharides, although some
monosaccharides such as D-fructose, D-fructose-PO4, and D-glucose were assimilated
by approximately half of the tested strains. Other carbon sources such as
glucuronamide, glycerol, and Tween 40 were also favored by the majority of the novel
cave bacteria. The general genome features of the new bacterial species are listed in
Table 2. As is shown in Table 2, the genome sizes of these potential new species range
from 2.5 to 6.5 Mb, coding 2,507 to 5,725 proteins. The Clusters of Orthologous
Groups (COG) database was used for the classification of the genes in the sequenced

genomes (Figure 4b). The results revealed that the highest number of genes contained
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by these genomes are associated with transcription (COG-K), translation (COG-J), as
well as DNA replication and repair (COG-L) for information storage and processing.
For cellular processes and signaling, the genes involved in cell
wall/membrane/envelope biogenesis and signal transduction are commonly abundant
in sequenced genomes. Based on our analysis of the genes associated with
metabolism, we found that the cave bacteria preferred carbon sources composed of
amino acids (COG-E) and lipids (COG-I), which agreed with the results shown in
Figure 4a. We observed that energy production and conversion (COG-C) and
inorganic ion transport and metabolism (COG-P) were also abundant in the cave
bacterial genomes. Noticeably, a large quantity of the genes in these new bacterial
genomes are poorly characterized and their functions remain to be identified
(COG-S).

Eleven of the 14 new species have flagella, and the genome data mining predicted that
they have the capability for locomotive organ generation (Figure 4b). For bacteria
living in complicated and nutrient-limited environments, the ability to migrate toward
favorable environments (chemotaxis) is of importance for survival. We observed that
the genes for chemoreceptors, histidine kinase CheA, and adaptor CheW occurred in
11 of the genomes of the new bacteria, and the number of chemoreceptor genes
ranged from 2 (K2R01-6 and K1W22B-7) to as many as 46 (K2W22B-5). Biofilm
formation has also been reported in regard to the survival of cave bacteria (25-27).
Nine of the newly sequenced cave bacterial genomes have genes encoded for

polysaccharide biosynthesis. Cross-talk between chemotaxis and biofilm formation
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has also been reported recently (28), which indicates that coordination of bacterial
behavior may occur in cave microbiomes.

Cultured bacterial genomes and metagenomic data predict metabolisms relevant
to biogeochemical cycling in karst caves

To give an overview of the functional potential of the cultured bacteria from the karst
caves, a collection of cave bacterial genomes was established. The collection contains
14 newly sequenced bacterial genomes (Table 2) and 204 database-derived genomes,
representing the bacterial species found in the cave isolates in this study (Dataset S4).
These genomes covered 218 of the species found in the cultured bacterial collection,
and accounted for 72.3% of all of the isolates in terms of their relative
culture-frequencies. A total of 1,060,824 genes were recognized by CD-HIT and were
finally clustered as a non-redundant gene catalog containing 857,889 representative
sequences. The non-redundant cave gene catalog was annotated according to the
Kyoto Encyclopedia of Genes and Genomes (KEGG), and 7,476 KEGG orthologous
(KOs) were identified (Dataset S5). The genes involved in genetic information
processing (14.6%) accounted for the largest proportion, followed by signaling and
cellular process (11.5%), carbohydrate metabolism (9.4%), amino acid metabolism
(7.7%), energy metabolism (4.1%), and other metabolic processes. In addition, we
collected 8 metagenome datasets for karst cave sediment, speleothem, and rock
surface samples from previous studies (Dataset S6). The datasets were quality
controlled, re-annotated, and analyzed. The KOs related to the biogeochemical C/N/S

cycling in karst caves were checked in both the cultured genome collection and the
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metagenomic data. Combined with the relative culture-frequencies of the bacterial
isolates, the cultured genome collection and the metagenomic data were used to
predict metabolic traits relevant to C/N/S cycling in karst caves.

Carbon metabolism. Analyses of the cultured genome collection and the gene
catalog of the cave bacteria revealed that poly-B-hydroxybutyrate (PHB) and aromatic
compounds may play important roles in biogeochemical carbon cycling in karst caves
(Figure 5a). A total of 35.8% of the cultured bacteria in our genome collection contain
genes for PHB synthesis, and 33.3% also contain genes for PHB depolymerization
(Figure 5a). Previous studies have shown that stalagmite trapped poly aromatic
hydrocarbons (29, 30), and aromatic compounds may serve as energy and carbon
sources for cave systems. In our dataset, 4-hydroxybenzoate (4HB) degradation genes
in the B-ketoadipate pathway were abundant, but the genes encoding
3-oxoadipate-CoA-transferases were missing (Figure 5a). We also found that 57 of the
genomes, accounting for 26% of all of the isolates, were encoded with genes for
carbon monoxide (CO) oxidation (Dataset S6). Although CO is toxic due to its ability
to bind metalloproteins, it has a high potential as an electron donor, and thus, it may
serve as a favorable carbon and/or energy source in extreme ecosystems (31-33) and
in karst caves. Notably, the only cultured USCa bacterium (Methylocapsa gorgona
MGO08), which is a counterpart of the desired cave bacterial cluster (USCy) in an
acidic environment, has been proved to be able to use CO as an energy source (34).
CO oxidation could be coupled with acetate or methane production under anaerobic

conditions (35, 36), and under aerobic conditions, it could provide energy for CO,
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fixation through the Calvin-Benson-Bassham (CBB) cycle (37-39). When we mined
the genome dataset for the existence of the CBB pathway (40), we found the rbcL
gene in 30 genomes, accounting for 14.9% of the relative abundance.

The CO oxidation gene (cox) in karst cave bacterial genomes can be exemplified by
our newly sequenced Oleomonas cavernae KIW22B-8" (Table S2 and Figure S2).
The K1W22B-8" genome harbors CO dehydrogenase genes (coxMSL), the
membrane-integral ATPase gene (coxD), and the xdhC-like genes (coxF and coxl)
involved in the Mo=S group (41). However, it lacks the genes (coxB, coxC, coxH, and
coxK) that were identified in Oligotropha carboxidovorans OMS5 (42) and are needed
to anchor CO dehydrogenase to the cytoplasmic membrane, suggesting that the CO
dehydrogenase in the K1W22B-8" strain may be located in the cytoplasm.
Interestingly, a soluble methane monooxygenase-like gene cluster (smoXYB1C1Z),
which has been prove to be active on C, to C4 alkanes and alkenes in Mycobacterium
chubuense NBB4 (43), was also found in the genome of the K1W22B-8" strain
(Figure S2).

In accordance with the cultured genome collection, the analyses of the metagenomic
data revealed that the genes involved in PHB synthesis and depolymerization, 4HB
degradation, and CO oxidation were not only prevalent but were also abundant in
cave samples (Figure 5b). In contrast to the cultured genome collection, in which all
three genes involved in the conversion from acetyl-CoA to PHB were detected in 80
bacterial genomes, acetoacetyl-CoA reductase (PhaB, K00023) was absent in all eight

cave metagenome datasets. The distribution of the CO dehydrogenase varied among
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the cave metagenome datasets for the different samples, and the Portuguese cave
samples (NCBI Access. Nos. ERR1514431, ERR1514432, and ERR1514433) exhibit
a higher CO oxidation potential than the cave samples from USA (NCBI Access. Nos.
SRR12350322, SRR11676647, SRR11676930, and SRR11678124) and India (NCBI
Access. No. SRR9599867).

Nitrogen metabolism. Based on our analysis, the NtrC family
two-component-system was distributed in 88 of the genomes in the cave bacterial
genome collection, suggesting an intensive regulation of nitrogen metabolism. Eleven
of the genomes in our dataset exhibited the potential to fix dinitrogen into biologically
available ammonia (Figure 5¢). The novel Azospirillum cavernae K2W22B-5", which
was isolated from the water samples and has a high abundance, is representative of
these 11 genomes. The genome of strain K2W22B-5" contains all three key operons
for nitrogen fixation, i.e., nifHDK, nifENX, and nifUSV (Figure S2), which are needed
for encoding the structural part of nitrogenase, the nitrogenase molybdenum-cofactor,
and the Fe-S cluster, respectively (44, 45). Similar to the genetic organization in other
Azospirillum species, there is an fdxB gene (nif-specific ferredoxin I1I) downstream of
the nifENX operon, and a cysE gene (serine O-acetyltransferase) between the nifUSV
operon and the nif/V gene (nitrogenase-stabilizing/protective protein) (46). Nitrogen
fixation demands a large amount of adenosine triphosphate (ATP), and diazotrophic
bacteria have several hydrogenase systems to oxidize the nitrogen fixation byproduct
hydrogen (47). The oxygen tolerant (NiFe)-hydrogenase is wide spread in the domain

of bacteria (48), and its coding genes (hyaAB) was also found in the genome of strain
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K2W22B-5".

More than 50% of the cultured bacteria have the potential to perform one or two steps
of dissimilatory nitrate reduction (Figure 5c). The gene cluster responsible for the
reduction of dissimilatory nitrate to nitrite in the genome of strain K2W22B-5" is
napABCDE, which encodes the enzyme needed to reduce nitrate in periplasm.
However, more of the genomes in our dataset contain narGHI genes, which encode a
membrane-bound nitrate reductase capable of directly producing a proton motive
force during the reduction process (49). The reduction of dissimilatory nitrite to
ammonia is encoded by nirBD; and in the genome of strain K2W22B-5", the genes
for nitrate/nitrite transport are encoded by nrtABCD (Figure S2 and Table S2).

In contrast, analysis of the metagenomic data did not find complete dissimilatory
nitrate reductase. Either the gamma subunit of the membrane-bound nitrate reductase
(Nar I, K00374) or the electron transfer subunit of the periplasmic nitrate reductase
(NapB, K02568) was missing. Nitrite reductases were prevalent and abundant in all 8
metagenomic datasets (Figure 5d). Nitrogenase exhibited different distributions in the
cave metagenome data, and it was being more abundant in Hawaiian cave samples
(NCBI Access. Nos. SRR12350322, SRR11676647, SRR11676930, and
SRR11678124) than in other samples.

Sulfur metabolism. Genes encoding dissimilatory sulfate reduction were rarely
detected; however, both the cultured cave bacterial genomes and the metagenomic

data contained encoded enzymes needed for assimilatory sulfate/sulfite reduction or

the reduction of thiosulfate to sulfide (Figures Se and 5f). Based on our analysis, 71.1%
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and 36.1% of the genome collection (Figure Se) exhibited the potential for the
oxidation of thiosulfate and sulfite, respectively, suggesting that thiosulfate and sulfite
may be important molecules for the biogeochemical cycling of sulfur in karst caves.
Validation of the B-ketoadipate pathway and identification of the “missing”
3-oxoadipate-CoA-transferase in the cultured bacterial genomes

As was predicted above, the B-ketoadipate pathway for aromatic compound
degradation (assigned as the xenobiotics metabolism in the KEGG; Figure 6b) was
quite abundant in both the cultured bacterial genomes and the metagenome data.
Surprisingly, the genes encoding 3-oxoadipate-CoA-transferase (pcal/) were not
annotated by the Automatic Annotation Server (KAAS) tools in the cultured genome
collection (Figure 5a), but they were annotated in the metagenomics data (Figure 5f;
Data accession numbers K01031/K01032). Thus, we extracted the annotated genes
(K01031/K01032) from the metagenomic data and performed a blast search against
the cultured bacterial genomes. The top 16 hits showing sequence identities of >47%
were collected and considered as candidate pcalJ of the cultured bacterial genomes
(Table S3). Based on the NCBI and KEGG annotations, we further manually screened
the cultured genome data for any continuous genetic clusters of the B-ketoadipate
pathway and any pcalJ candidates. We obtained a total of 55 genomes that harbored
candidate 3-oxoadipate-CoA-transferase genes within the genetic clusters of the
B-ketoadipate pathway. Two representative genetic clusters from the genomes of
strains K2W22B-5" and K1R23-30" are shown in Figure 6a. The sequences of pcal

and pcaJ, which encode the two subunits of 3-oxoadipate-CoA-transferase, were
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extracted from 55 genomes and were concatenated for phylogenetic analysis. The
results revealed that the candidate 3-oxoadipate-CoA-transferase genes were grouped
into two clusters. Cluster I was composed of 26 candidate genes, which mainly
originated from the Pseudomonas species that has been extensively investigated for
aromatic compound degradation. Cluster II was composed of 29 candidate genes, and
their hosts were very diverse (Figure 6b). We tested two strains (K2W22B-5" and
K1R23-30") and confirmed that both were able to grow with 4-hydroxybenzoate as
the sole carbon source (Figure S3). We further cloned and expressed their candidate
pcalJ in E. coli. The expressed Pcall products were purified and

3-oxoadipate-CoA-transferase activities were demonstrated (Figure 6d).

Discussion

In this study, we performed large-scale, intensive cultivation of cave microbiomes,
and 3,562 bacterial isolates representing 329 species were obtained. Previous studies
of the cultivation of cave bacteria have suggested that the cultivation of cave
microorganisms could be challenging because the conventional culture media used in
labs would result in osmotic stress on cave bacterial cells that are adapted to
nutrient-poor cave environments (50). To increase the cultivability of cave bacteria,
we used the R2A medium, which has been demonstrated to be effective for
oligotrophs (51-53). We also adopted a strategy that transferred all of the visible
colonies for sequential cultivation. Although this strategy was laborious and contained
a bias that could possibly be overcome by using diluted nutrient culture media, lower

temperatures, or an extended cultivation time, we still obtained the largest collection
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of cave bacteria to date. Based on the evaluation using the 16S rRNA gene abundance,
our cave isolates represent 75% for the highest and about 28.7-31.1% on average of
the 16S rRNA gene abundances from previous datasets for karst caves. This result
verifies that our cultures representative the major microbial community in karst caves
relatively well. Our culture collection is characterized by the predominance of the
Proteobacteria, Actinobacteria, and Firmicutes members, but it also contains other
bacterial groups found in cave habitats, including Bacteroide and Deinococcus—
Thermus. Notably, Proteobacteria and Actinobacteria represent the most ubiquitous
bacterial groups detected in cave environments (54-56). At the genus level,
Brevundimonas of Proteobacteria was most frequently cultivated in this study, and it
has been found to be abundant in other oligotrophic caves (57). The genus
Streptomyces of Actinomycetes was also predominant in this study, and the members
of the cave-originated Streptomyces have been used for the selection of new
antibiotics (58). Although the two caves we studied have not been open to tourists,
they both contained Bacillus and Paenibacillus of the phylum Firmicutes, which have
also been found in a cave open to tourists, i.e., Kartchner Caverns (54).

Microbial metabolisms are the major driving force of biogeochemical cycling in cave
ecosystems. The results of culture-independent methods have predicted the general
metabolic reactions of these microbial communities, but which organism plays what
role remains to be specified. In this study, we collected 204 cultured bacterial
reference genomes from public databases that corresponded to our bacterial isolates

and sequenced 14 new bacterial species. These 218 bacterial genomes were analyzed
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to dissect their specific metabolic traits that are relevant to the biogeochemical cycling
of C/N/S in cave environments. For examples, the CO oxidation and N, fixation
abilities of the newly cultivated Oleomonas and Azospirillum species, respectively,
may reduce carbon and nitrogen limitations in cave environments. In nutrient limited
habitats, microorganisms are forced to use any available nutrient to survive (59). A
range of bacteria in Movile Cave were able to grow on one-carbon (C;) compounds
(60). In addition to Oleomonas species, we also obtained facultative methylotrophic
bacteria such as Methylorubrum aminovorans, M. thiocyanatum, Methylobacterium
hispanicum, and Methylibium petroleiphilum. Recently, a clade of uncultured
methanotrophs that are believed to have a high affinity for oxidizing atmospheric
methane in caves have received a great deal of attention (15). Although methane
oxidization was not confirmed, the Oleomonas species found in our study exhibit the
potential to oxidize C, to C4 alkanes, providing a new perspective for research on

alkane oxidation in cave environments. Regarding nitrogen limitation, evidence has

been found for the existence of nitrogen fixation genes in other cave water niches (61).

We determined that more than 6% of all of the isolated strains, including the newly
cultivated Azospirillum species, have the potential to fix N, into ammonia. Notably,
the Azospirillum griseum in eutrophic river water (62), which is the closest
phylogenetic neighbor of the newly cultivated cave Azospirillum species, does not
contain any nitrogen fixing genes. Future studies of these two Azospirillum species
may provide hints as to the evolution of nitrogen fixation at the genomic level.

The B-ketoadipate pathway is widely distributed in soil bacteria and fungi (63), but it
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has not been documented in the microbiomes in karsts caves. In this study, we
observed abundant genes encoding the -ketoadipate pathway in both the cultivated
bacterial genomes and the previously reported metagenomic datasets (NCBI Access.
Nos. ERR1514431, ERR1514432, ERR1514433, SRR9599867, SRR12350322,
SRR11676647, SRR11676930, and SRR11678124). We further found that the pcal/
genes from 55 of the cultivated genomes grouped into two clusters according to their
sequences, and we experimentally identified the 3-oxoadipate-CoA-transferase
activities of two of the newly cultivated representative bacterial strains. The results of
this study demonstrate the power of studies conducted using a combination of
culture-dependent and metagenomic methods, and the pcal/ sequences of the two
clusters provide highly valuable information for improving future pcal/ annotation
using the KAAS tools.

Materials and methods

Caves. All of the samples were collected from two unexploited karst caves designated
as Cave 1 (28°12°37.74" N; 107°13°38.34" E) and Cave 2 (28°12735.94" N;
107°13739.66" E) in the Kuankuoshui Nature Reserve, Zunyi, Guizhou Province,
China. The nature reserve was established in 2007 due to the subtropical forests and
rare animals it contains. Except for its clasolite-based erosional landform in the
central-southern areas, the nature reserve predominantly contains karst landforms
developed from carbonate rocks. The annual average temperature of the nature
reserve is 11.6—15.2°C, and the annual average relative humidity is more than 82%

(64). Both Cave 1 and Cave 2 are horizontally zonal, and each has only one entrance
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hidden on a hillside in the forest. Cave 1 is 908 m above sea level and 400 m in length,
and the humidity and temperature at the time of the sampling were 75-80% and 21—
22°C, respectively. Cave 2 is 930 m above sea level and 750 m in length, and the
humidity and temperature at the time of sampling were 75-85% and 20-23°C,
respectively.

Sample collection. The sampling procedure has been described by Zhang et al. (65).
The samples were collected from the entrance to the deep part of the cave, and each
sampling site was at least 100 m from the next site. Briefly, 10 ml of seeping or
stream water were collected in 15 ml sterile centrifuge tubes at each site. Ten grams of
shallow sediment (~1-5 ¢cm) were collected from three sites after removing the
surface layer (~1 cm). Rock samples were collected from five different orientations at
each sampling site and were sealed in germfree zip-locked bags (66). All of the
samples were kept at 4°C until further processing. A total of 42 samples were obtained
from the two caves (Cave 1 and Cave 2), of which 20 samples were collected from
Cave 1 (4 sediment, 8 water, and 8 rock samples) and 22 samples were collected from
Cave 2 (6 sediment, 11 water, and 5 rock samples).

Bacterial isolation and cultivation. Two grams of sediment sample were suspended
in 18 ml of sterile saline solution (NaCl, 0.85%, m/v) and were shaken for 30 min at
room temperature. Two milliliters of a water sample were added to 18 ml of sterile
saline solution and mixed thoroughly. The rock samples were weighed and placed in
enough sterile saline solution to achieve a weight to volume ratio of 1:10, and then,

they were shaken for 30 mins at room temperature. Ten-fold serial dilutions were
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using sterile saline solution and 0.2 ml of the diluent with an appropriate
concentration was spread on R2A medium (Reasoner's 2A agar) (67) in triplicate. The
spread plates were incubated at 30°C for 48—72 h, and then, the colonies were picked
and re-streaked to confirm their purity.

Identification of the cave bacteria. Amplification of 16S rRNA genes was
accomplished using universal bacterial primers 27F (5°—
AGAGTTTGATCTGGCTCAG-3’, corresponding to positions 8 to 27 of E. coli) and
1492R (5’-GGTTACCTTGTTACGACTT-3", corresponding to positions 1510 to
1492 of E. coliy). The cells were collected from the agar plates and lysed in 2 pl of
alkaline lysis solution (0.2 M NaOH, 1% SDS) for 5 min, and then, 98 pl of double
distilled water was added to the lysis system and was mixed thoroughly as an
amplification template.

The 50 pl of polymerase chain reaction (PCR) mixture contained 1 pl of template, 1
ul (10 pmol) of each primer, and 47 pl of 1.1 X Golden Star T6 Super PCR Mix
(TsingKe Biotech. Beijing). The amplification conditions were as follows: initial
denaturation (2 min at 94°C), 30 cycles of denaturing (30 sec at 94°C), annealing (30
sec at 55°C), extension (1 min at 72°C), and a final extension (72°C for 5 min). Five
microliters of PCR products were visualized on a 1% agarose gel stained with YeaRed
Nucleic Acid Gel Stain (Yeasen Biotech, Shanghai).

The amplified 16S rRNA genes were sequenced and then aligned using blast+ against
NCBI’s 16SMicrobial database (68). The biochemical characteristics of the novel

species were determined using Biolog GEN III kits according to the manufacturer’s
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instructions. The average nucleotide identity (ANI) value between new species and
their close relatives were calculated using ChunLab’s online ANI Calculator (69).
Digital DNA-DNA hybridization (IDDH) was performed on the novel species and
their close relatives using the Genome-to-Genome Distance Calculator (GGDC2.1)
(70).

Diversity and phylogenetic analysis. The diversity indices were calculated using the
free license statistical software PAST (71). All of the statistical analyses of the data
were performed in R version 3.4.2 (https://www.R-project.org/). The normal
distributions of the data were checked using the Shapiro-Wilk test, and the
homoscedasticity of variances was analyzed using Bartlett's test. The significant
differences in the variances of the parameters were evaluated using the analysis of
variance (ANOVA) test or the Student’s t-test, and post hoc comparisons were
conducted using Tukey’s honest significant differences test. The principal coordinates
analysis (PCoA) was conducted using the vegan package in R
(https://CRAN.R-project.org/package=vegan). To statistically support the visual
clustering of the bacterial communities in the PCoA analyses, the different cave
substrates were compared using permutation-based hypothesis tests (PERMANOVA).
Visualization of the diversity and distributions of the cave isolates was performed
using the ggplot2 package in R unless otherwise stated (72). The Venn diagrams were
plotted using the VennDiagram package in R (73).

The phylogenetic trees were established using the neighbor-joining algorithm. The

relative evolutionary distances among the sequences were calculated using the
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Kimura 2-parameter model, and the tree topology was statistically evaluated using
1000 bootstrap resampling (74). The phylogenetic trees were constructed using the
MEGA7 software (75), and they were further modified using iTOL (Interactive Tree
Of Life) (76).

Whole genome sequencing and functional annotation. The genomic DNA was
extracted using a Wizard Genomic DNA Purification Kit (Promega, USA) according
to the manufacturer’s instructions, and then, it was sheared into 10 kb segments using
a Covaris g-TUBE (Covaris, USA). AMPure XP beads (Beckman Coulter, USA) were
used to purify the segmented DNA, and a PacBio SMRTbell Template Prep Kit
(PacBio, USA) was used to prepare the segments for sequencing. The SMRTbell
templates were annealed with primers and combined with polymerase using a PacBio
DNA/Polymerase Kit (PacBio, USA), and finally, they were sequenced on a PacBio
RS 1II platform.

The sequence assembly was performed in the PacBio SMRT Analysis version 2.3.0
platform using the RS HGAP_Assembly.2 protocol (77). FinisherSC was
subsequently used to further polish the assemblies (78). The final assemblies were
annotated following the NCBI Prokaryotic Genome Annotation Pipeline (79), and
their metabolic potentials were predicted using the KEGG Automatic Annotation
Server (KAAS) (80) and the eggnog mapper (81). The completeness of each bacterial
genome was evaluated using BUSCO (82). The non-redundant gene catalog of the
cultured cave bacteria was obtained using CD-HIT (83). Amino acid sequences with

more than 90% similarity and 80% coverage were assigned as one cluster.
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16S rRNA gene amplicon and metagenome analysis. 16S rRNA amplicon and the
metagenomes of the cave samples were downloaded from the NCBI Sequence Read
Archive (SRA) using the sra-toolkit v2.8.2. For the 16S rRNA gene amplicon analysis,
VSEARCH v0.9.11 was used to merge paired end sequences and for quality control
(fastq_maxee = 0.01) (84). The singletons and chimeras were removed, and the OTUs
were obtained using the UNOISE algorithm in USEARCH v11.0.667 (85, 86).
Non-bacterial sequences and sequences representing OTUs with an average relative
abundance of less than 0.00001 were filtered out using QIIME v1.9.1 (87). Blast+
v2.10.1 was used to construct the cultured cave bacteria 16S rRNA gene database and
to align the amplicon data against this database (68).

The quality control of the metagenome data was performed using KneadData v0.7.4
(http://huttenhower.sph.harvard.edu/kneaddata), a sliding window was set as 4 bp to
filter bases with a quality value of less than 20, and the filtered sequences with a
length of less than 50 bp were dropped. Samples with less than 10,000 reads after
quality control were removed. The resulting sequences were assembled using
MEGAHIT v1.2.9 (88). Prokka v1.14.6 was used for the gene annotation (89), and
then, CD-HIT v4.8.1 was used to construct a non-redundant gene catalog (83). The
nucleotide sequences in the gene catalog were translated into amino acid sequences
using EMBOSS v6.6.0 (90), and then, they were functionally annotated using
eggnog-mapper v2.0.1 (81). Salmon v1.3.0 was used to quantify the genes in each
sample (91).

3-oxoadipate-CoA transferase expression, purification, and activity assay. The
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bacterial strains, plasmids, and primers used for the 3-oxoadipate-CoA transferase
expression are listed in Table 3. The genomic DNA of strains K2W22B-5" and
K1R23-30" was prepared as described above. PCR amplification of the target DNA
fragments was performed using Phusion High-Fidelity DNA polymerase (New
England Biolabs, USA). The vector plasmids and DNA fragments were digested using
restriction endonucleases Nde I and Hind I1I (New England Biolabs, USA), and then,
they were ligated using T4 DNA ligase (New England Biolabs, USA). After the
ligation, pcal and pcaJ were given a 6xXHis-tag at N-terminus and C-terminus,
respectively.

To prepare the 3-oxoadipate-CoA transferase of strains K2W22B-5" and K1R23-30",
E. coli BL21 (DE3) carrying pET-28a-k5pcall and pET-28a-30pcal] were grown in
Luria-Bertani (LB) broth supplemented with 50 pg/ml of kanamycin at 37°C until the
cell density (OD600) reached 0.3—0.4. The protein expression was induced using 0.3
mM IPTG at 16°C overnight. The cells were harvested through centrifugation and
then, they were lysed using ultrasonication. The protein purification was performed
with a Hisbind purification kit (Novagen, USA) following the manufacturer’s
instructions. An Amicon Ultra-15 centrifugal filter (Merck Millipore, USA) was used
for the buffer desalting and protein concentration.

The 3-oxoadipate-CoA transferase assays were performed as described by MacLean et
al. (92). The assay mixture included 200 mM Tris-HCI (pH 8.0), 40 mM MgCl,, 10
mM 3-oxoadipate, and 0.4 mM succinyl-CoA (Sigma-Aldrich, USA) with a final

volume of 200 pl (path length, 0.52 cm). Ninety-six well microtiter plates with UV
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transparent, flat bottoms (Corning, USA) and a multimode plate reader (PerkinElmer,
USA) were used to monitor the formation of 3-oxoadipyl-CoA, with Mg2+ at 305 nm
over a temperature range of 23 to 24°C. The molar extinction coefficient of 16,300
M em™ corresponding to the 3-oxoadipyl-CoA:Mg** complex was used to calculate
the productivity (93).

Data availability. The 16S rRNA genes of the cave bacterial isolates in this study are
presented in Dataset S1. The 14 newly sequenced cave bacterial genomes have been
deposited in the NCBI GenBank and are available under BioProject PRINA490657
(https://www.ncbi.nlm.nih.gov/bioproject/PRINA490657). The accessions of all of
the bacterial genomes analyzed in this study are presented in Dataset S3. The
accessions and sample descriptions of the 16S rRNA gene amplicon and metagenome
data used in this study are presented in Dataset S7. The representative strains of the
previously described bacterial species obtained in this study are publicly available in
the China General Microbiological Culture Collection Center (CGMCC), and the
accession numbers of each strains are listed in Dataset S8.
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Table 1 New bacterial species from karst caves 1 and 2 and their etymology and accession numbers in the international culture

collections.
T Rank Etymol Tyne Desienati CGMCC/KCTC/
‘axonom; an molo; ¢ Designation
Y Y & P € NBRC Accessions
. T CGMCC 1.13529/
Azospirillum cavernae sp.nov.  ca.ver'nae. L. gen. n. cavernae, of a cave K2W22B-5
NBRC 113558
. T CGMCC 1.13537/
Deinococcus cavernous sp.nov.  ca.ver'nus. L. gen. masc. n. cavernous, of a cave  K2S05-167
KCTC 43236
. T CGMCC 1.13526 /
Massilia cavernae sp.nov.  ca.ver'nae. L. gen. n. cavernae, of a cave K1S02-61
KCTC 82189
. . cavum, L. hole; watar, Gk, water, caviwatar, T CGMCC 1.13535/
Nocardioides caviwatar Sp. nov. K1W22B-1
from cave water KCTC 49465
Noviherbaspirillum cavernae sp.nov.  ca.ver'nae. L. gen. n. cavernae, of a cave K2R10-39" CGMCC 1.13602
Noviherbaspirillum rocha sp.nov.  ro’cha. ML. gen. n. rocha, from rock KI1R23-30" CGMCC 1.13534
. . . sedi’mentum. L. gen. pl. n. sedimentum, from T
Noviherbaspirillum sedimentum Sp. nov. X K1S02-23 CGMCC 1.13533
sediment
T CGMCC 1.13560 /
Oleomonas cavernae sp.nov.  ca.ver'nae. L. gen. n. cavernae, of a cave K1W22B-8
KCTC 82188
. . T CGMCC 1.13561 /
Paenisporosarcina cavernae sp.nov.  ca.ver'nae. L. gen. n. cavernae, of a cave K2R23-3
NBRC 113453
ca.verne’co.la. L. n. cavernae cave; L. suff. -cola, T CGMCC 1.13525/
Pseudomonas cavernecola Sp. nov. K1S02-6
dweller; N.L. n. cavernecola cave-dweller KCTC 82190
T CGMCC 1.13586 /
Pseudomonas cavernae sp.nov.  ca.ver'nae. L. gen. n. cavernae, of a cave K2W318S-8
KCTC 82191
Sphingomonas cavernae sp.nov.  ca.ver'nae. L. gen. n. cavernae, of a cave K2R01-6" CGMCC 1.13538 /
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KCTC 82187

Table 2 General features of the newly cultivated and novel bacterial genomes

Organism

GenBank accession Contigs Size (Mb) Genes Proteins

number

G+C% Completeness

Azospirillum cavernae strain K2W22B-5"
Deinococcus cavernous strain K2805-167"
Massilia cavernae strain K1502-61"
Nocardioides caviwatar strain KIW22B-17
Noviherbaspirillum cavernae strain K2R10-39"
Noviherbaspirillum rocha strain K1R23-30"
Noviherbaspirillum sedimentum strain K1502-23"
Oleomonas cavernae strain K1W22B-8"
Paenisporosarcina cavernae strain K2R23-3"
Pseudomonas cavernecola strain K1802-6"
Pseudomonas cavernae strain K2W31S-8"
Sphingomonas cavernae strain K2R01-6"

Crenobacter cavernae strain KIW11S-77"

GCA_003590795.1
GCA_003590815.1
GCA_003590855.1
GCA_003600895.1
GCA_003590875.1
GCA_003591035.1
GCA_003590835.1
GCA_003590945.1
GCA_003595195.1
GCA_003596405.1
GCA_003595175.1
GCA_003590775.1
GCA_003355495.1
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32
201

6.461
4.566
5.439
3.467
4.665
6.495
5.038
5.643
2.537
5.626
4.950
4244
3271

5850
4571
5022
3334
4376
5936
4666
5559
2658
5241
4514
4033
3167

5595
4192
4473
3236
4207
5725
4484
5077
2507
4830
4308
3878
2980

66.0%
64.0%
63.6%
69.4%
59.9%
57.5%
59.4%
66.7%
39.8%
60.6%
64.5%
63.9%
65.3%

94.2%
77.7%
87.3%
94.3%
98.3%
98.9%
98.8%
83.8%
95.6%
98.7%
98.9%
91.0%
96.9%
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Solimonas fluminis strain K1W22B-7 GCA_003428335.1 1 5373 4807 4699  67.1% 92.0%
837 Table 3 Bacterial strains, plasmids, and primers used in this study

Strain/Plasmid/Primer Description Source/Sequences
Strains
Azospirillum K2W22B-5" 4HB degrading strain This study
Noviherbaspirillum KIR23-30"  4HB degrading strain This study

"% E. coli BL21 (DE3) Protein expression host TransGen

E o Plasmids

'% _%D pET-28a (+) Gene expression vector Novagen

% '45 pET-28a-k5pcall pET-28a (+) carrying pcal and pcaJ of This study

_§ < strain K2W22B-5"

L%_ pET-28a-30pcall pET-28a (+) carrying pcal and pcaJ of This study

< strain K1R23-30"
Primers
k5pcalJ-F For PCR of pcal and pcaJ of K2W22B-5"  GACGCATATGGCGCTCATCACACCC
kSpcalJ-R For PCR of pcal and pcaJ of K2W22B-5"  CCCAAGCTTACCCTCCGAACTGGTGCT
30pcall-F For PCR of pcal and pcaJ of KIR23-30" GCGGCATATGATCAATAAAATTTGCACTTCC
30pcall-R For PCR of pcal and pcaJ of KIR23-30" ATCCAAGCTTATTGGGGATATACGTCAGCG
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Figure legends

Figure 1 Workflow of the isolation procedure and the diversity of the cultured cave
bacteria. The boxplots in panels (b) and (¢) show the Shannon indices of the cultivated
bacterial strains from the two caves and the three cave niches (rock, sediment, and water).
The pie charts in panels (b) and (c) show the taxonomy distribution of the cave isolates
from the two caves and the three cave niches. The PCoA plot in panel (b) shows the
B-diversity of the cultured cave bacteria based on the Bray-Curtis dissimilarity. The Venn
diagram in panel (b) shows the intersection of the cave isolates from the cave niches at
the species level.

Figure 2 Taxonomic distribution of the cultured cave bacteria collection and its
representativeness in 16S rRNA gene amplicon datasets. Panel (a) shows the taxonomic
distributions at the phylum and genus levels. Proteo. - Proteobacteria; Actino. -
Actinobacteria; and Firmi. - Firmicutes; The boxplots in panel (b) show the percentage of
the sequences in the amplicon datasets that are represented by the cultured isolates, and
the triangles in each boxplot indicated the mean representativeness of each dataset.
Figure 3 Morphologies and phylogenetic affiliations of the new species isolated from the
cave samples. The morphology in panel (a) is from transmission electron microscopy.
The phylogenetic tree in panel (b) was constructed based on the 16S rRNA genes using
the neighbor-joining algorithm.

Figure 4 Metabolic overview of the newly isolated bacterial species from the caves.

Panel (a) shows the assimilation of the carbon sources according to the Biolog® GENIII
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system; purple indicates positive and white indicates negative. Panel (b) shows the
distributions of the COGs in the 14 newly sequenced genomes, the COGs are color-coded,
with the highest number of genes shown in pink, and the genes with the lowest number
shown in green.

Figure 5 Overview of the metabolisms of (a, c, ) the cave cultured genome collection
and (b, d, f) the public cave metagenome data and their relationships to the C/N/S cycles.
The numbers and percentages on the arrows in panels (a), (c), and (e) represent the
number of species that are able to perform the conversion and their relative abundances;
the width of the arrow is in proportion to the number of species that are able to perform
the transformation. The color ranges in panels (b), (d), and (f) indicate the TPM value
(transcripts per million) of each KO in the metagenome data (accession numbers are
shown as x-axis labels).

Figure 6 (a) Representative genetic cluster and (b) B-ketoadipate pathway, and (c) the

two 3-oxoadipate-CoA-transferase gene clusters and (d) their enzymatic activity in the
pathway. The red percentages in panel (a) indicate the amino acid similarities between the
cave isolates and strain ATCC35469. The controls in panel (d) summarize three
conditions: the assay mixture without enzyme, or with K5PcalJ but without succinyl-CoA,

or with 30PcallJ but without succinyl-CoA.
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Supplementary information

Table S1 Distribution of the novel taxa in the two caves and among the three substrates
Table S2 Carbon and nitrogen metabolism related genes in strains K1W22B-8" and
K2W22B-5"

Table S3 Blast results for the annotated PcalJ in the metagenomic data versus the
cultured bacterial genomes

Figure S1 Phylogenetic trees based on the 16S rRNA genes of the cave bacterial isolates.
Figure S2 Organizations of the carbon and nitrogen cycling related genes in strains
K2W22B-5" and K1W22B-8".

Figure S3 Growth of strain K2W22B-5" with 4HB as the sole carbon source.

Dataset S1 16S rRNA gene sequences and alignment results for the isolated cave bacteria
Dataset S2 Statistics for the isolated cave bacteria species

Dataset S3 Description of the new bacterial species from the karst caves

Dataset S4 Accession and completeness of the cultured cave bacterial genomes

Dataset S5 Annotation of the non-redundant cave gene catalog (using the KEGG
database)

Dataset S6 Check list of the C/N/S metabolism related genes in the cave bacterial
genomes

Dataset S7 Metadata of the culture-independent data used in this study

Dataset S8 Accession numbers of the representative bacterial strains obtained in this

study
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WP_103873071-70 (Bosea lathyri)
WP_034805849-46 (Ensifer adhaerens)
WP_088896551-52 (Sinorhizobium meliloti)
RJF79459-60 (Azospirillum cavernae K2W22B-57)
WP_074941620-21 (Pseudomonas composti)
WP_016492527-28 (Pseudomonas resinovorans)
WP_090446767-65 (Pseudomonas benzenivorans)
RJG08842-43 (Pseudomonas cavernecola K1S02-67)
AYC32438-37 (Pseudomonas cavernae K2W31S-8T)
WP_090309789-86 (Pseudomonas linyingensis)
WP_038607417-20 (Pseudomonas alkylphenolica)
WP_042123051-52 (Pseudomonas japonica)
WP_011532479-80 (Pseudomonas entomophila)
WP_010220877-79 (Pseudomonas dorbqhuensis)
WP_115085494-95 (Pseudomonas wadenswilerensis)
WP_110950191-90 (Pseudomonas bohemica)
WP_025261631-30 (Pseudomonas cichorii)
WP_002554965-64 (Pseudomonas savastanoi)
WP_071551519-18 iPseudomonas frederiksbergensis)
WP_034103974-76 (Pseudomonas lurida)
TDV37633-34 (Pseudomonas helmanticensis)
WP_075949563-62 (Pseudomonas reinekei)
WP_084321749-49 (Pseudomonas migulae)
WP_020798340-41 (Pseudomonas umsongensis)
WP_093225829-27 (Pseudomonas vancouverensis)
NP_421208-09 (Caulobacter vibricides)
WP_003164227-28 (Brevundimonas diminuta)
WP_066602522-19 (Sphingobium czechense)
WP_048936334-33 (Sphingobium yanoikugae)
WP_072700625-23 (Rhodococcus coprophilus)
WP_072946558-59 (Rhodococcus koreensis)
WP_062795420-19 (Williamsia muralis)
WP_087031354-57 (Mycoﬁcibacteﬁum aurum)
WP_062654490-91 (Mycolicibacterium canariasense)
WP_074261341-40 (Agromyces cerinus)
WP_093606630-31 (Streptomyces indicus)
WP_055552985-86 (Streptomyces kanamyceticus)
WP_035079320-25 (Devosia riboflavina)
WP_018326114-15 (Rhizobium giardinii)
AUC07800-799 (Acinetobacter Iwoffii)
WP_039575296-99 (Sphingopyxis fribergensis)
TPG21315-16 (Variovorax ginsengisol)
WP_066267502-04 (Hydrogenophaga palleronii)
ATHO9467-ATI01744 (Alcaligenes faecalis)
WP_019574052-51 (Curvibacter .‘anceofarus)
RJG11610-30 (Massilia cavernae K1S02-617)
AUAL6195-94 (Achromobacter spanius)
APX77452-53 (Achromobacter insolitus)
EGP47038-39 éAchromobacter insuavis)
WP_013951896-97 (Cupriavidus necator)

|

|

RJG02842-43 (Noviherbaspirillum sedimentum K1502-23T)

WP_091874853-54 (Massilia yuzhufengensis)

RJG06693-92 (Noviherbaspirillum cavernae K2R10-39")

RJF99212-11 (Noviherbaspirillum rocha K1R23-307)
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