AEM Accepted Manuscript Posted Online 15 January 2021 Appl Environ Microbiol doi:10.1128/AEM.02440-20 Copyright © 2021 American Society for Microbiology. All Rights Reserved.

1 Intensive Bacterial Cultivation and Genome Assembly Reveal Previously

2 Unknown Bacteria and Metabolic Potential in Karst Caves

- 3 Hai-Zhen Zhu^{a,c,e}, Zhi-Feng Zhang^{d,e}, Nan Zhou^{a,c}, Cheng-Ying Jiang^{a,c}, Bao-Jun
- 4 Wang^{a,c}, Lei Cai^d, Hong-Mei Wang^b, Shuang-Jiang Liu^{a,c,e#}
- 5 ^a State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese
- 6 Academy of Sciences, Beijing, 100101, P. R. China;
- 7 ^b State Key Laboratory of Biogeology and Environmental Geology, China University
- 8 of Geosciences, Wuhan, P. R. China;
- 9 ^cEnvironmental Microbiology Research Center, Institute of Microbiology, Chinese
- 10 Academy of Sciences, Beijing, 100101, P. R. China;
- ^d State Key Laboratory of Mycology at Institute of Microbiology, Chinese Academy

- 12 of Sciences, Beijing, 100101, P. R. China;
- 13 ^e University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- 14 Corresponding author:
- 15 Shuang-Jiang Liu (<u>liusj@im.ac.cn</u>)
- 16 Institute of Microbiology, Chinese Academy of Sciences
- 17 Beichen Xilu No.1, Chaoyang District, Beijing 100101, China
- 18 Tel: +86-10-64807423; Fax: +86-10-64807421
- 19 **Running title:** Cultured microbiome from karst caves
- 20 Keywords: Bacterial cultivation, Karst cave microbiome, Biogeochemical cycling,
- 21 3-Oxoadipate-CoA-transferases, *Azospirillum*, *Oleomonas*.

22	Abstract: Karst caves are widely distributed subsurface systems, and the
23	microbiomes therein are proposed to be the driving force for cave evolution and
24	biogeochemical cycling. In past years, culture-independent studies on the
25	microbiomes of cave systems have been conducted, yet intensive microbial
26	cultivation is still needed to validate the sequence-derived hypothesis and to disclose
27	the microbial functions in cave ecosystems. In this study, the microbiomes of two
28	karst caves in Guizhou Province in southwest China were examined. A total of 3,562
29	bacterial strains were cultivated from rock, water, and sediment samples, and 329
30	species (including 14 newly described species) of 102 genera were found. We created
31	a cave bacterial genome collection of 218 bacterial genomes from a karst cave
32	microbiome through the extraction of 204 database-derived genomes and de novo
33	sequencing of 14 new bacterial genomes. The cultivated genome collection obtained
34	in this study and the metagenome data from previous studies were used to investigate
35	the bacterial metabolism and potential involvement in the carbon, nitrogen, and sulfur
36	biogeochemical cycles in the cave ecosystem. New N_2 -fixing Azospirillum and
37	alkane-oxidizing Oleomonas species were documented in the karst cave microbiome.
38	Two <i>pcaIJ</i> clusters of the β -ketoadipate pathway that were abundant in both the
39	cultivated microbiomes and the metagenomic data were identified, and their
40	representatives from the cultivated bacterial genomes were functionally demonstrated.
41	This large-scale cultivation of a cave microbiome represents the most intensive
42	collection of cave bacterial resources to date and provides valuable information and
43	diverse microbial resources for future cave biogeochemical research.

44	Importance: Karst caves are oligotrophic environments that are dark, humid, and
45	have a relative stable annual temperature. The bacteria diversity and their
46	metabolisms are crucial for understanding the biogeochemical cycling in cave
47	ecosystems. We integrated large-scale bacterial cultivation with metagenomic
48	data-mining to explore the composition and metabolisms of the microbiomes in two
49	karst cave systems. Our results reveal the presence of a highly diversified cave
50	bacterial community, and 14 new bacterial species were described and
51	genome-sequenced. In this study, we obtained the most intensive collection of
52	cultivated microbial resources from karst caves to date and predicted the various
53	important routes for the biogeochemical cycling of elements in cave ecosystems.
54	Introduction
55	Karst caves are subterranean spaces that are mainly formed by the corrosion of
56	soluble rocks such as limestone, dolomite, and gypsum. As relatively closed and
57	extreme environments, caves are characterized by darkness, high humidity,
58	comparably stable temperatures, and oligotrophic conditions (1). Nevertheless, rich
59	and diversified microbiomes survive in caves (2-6). Culture-dependent and
60	culture-independent studies have shown that Proteobacteria and Actinobacteria are
61	abundant, and Chloroflexi, Planctomycetes, Bacteroidetes, Firmicutes, Acidobacteria,
62	Nitrospirae, Gemmatimonadetes, and Verrucomicrobia also account for a significant
63	proportion of the total microbial diversities in caves (7-9). Cave microbiomes play
64	essential roles in the biogeochemical cycling of elements and in maintaining cave
65	ecosystems. For example, Acidithiobacillus thiooxidans was dominant in the snottites

66	from Frasassi cave, and it is considered to provide the major energy and nutrient
67	inputs for the sulfuric cave ecosystem (10). Other studies (11, 12) have revealed the
68	diverse genes involved in nitrification, nitrate reduction, and denitrification. Recently,
69	geobiological studies have suggested that caves contain abundant methanotrophic
70	microbial communities and may be an atmospheric carbon sink because of the highly
71	efficient methane oxidation performed by these microbes (13-15). Those conclusions
72	are largely based on culture-independent studies. However, culture-dependent studies
73	have shed light on cave microbial evolution and have provided new bioresources for
74	the discovery of antibiotics. For example, the Bacillus species are involved in
75	moonmilk and calcite formation (16, 17); the Leptothrix species are associated with
76	ferromanganese deposits and have been cultivated from cave samples (18, 19); the
77	Streptomyces strains from cave samples have exhibited strong inhibitory activities
78	against gram-positive bacteria (20).
79	China has more than half a million caves that are integrated with the global subsurface
80	system (21, 22). Many studies of microbial diversity have been conducted using
81	culture-independent methods (3, 4, 7, 9, 10); however, the intensive cultivation of
82	bacteria from the karst caves in China and around the world is rare. In this study, we
83	studied two karst caves in southwestern China. Through intensive bacterial cultivation
84	from rock, sediment, and water samples, we aimed to (i) discover previously
85	unknown bacterial taxa and accumulate cave bioresources; and (ii) explore the
86	bacterial metabolic potentials and involvements in cave biogeochemical cycles. We
87	obtained 3,562 bacterial isolates and sequenced the genomes of 14 new bacterial

88

89	and generated a cultured genome collection for karst cave microbiomes. Furthermore,
90	the involvement of the cultivated bacteria in biogeochemical C/N/S cycling in karst
91	cave environments was predicted through functional annotation of the cultured
92	genome collection and the mining of cultured-independent data from previous studies.
93	A new type of 3-oxoadipate-CoA-transferases, which was identified from the cultured
94	microbial genome collection, was biochemically and functionally characterized
95	through aromatic compound catabolism.
96	Results
97	Bacterial cultivation and diversity
98	Intensive and large-scale cultivation and identification of cave bacteria were
99	performed (Figure 1a). A total of 3,562 bacterial isolates were obtained, of which
100	1,408 and 2,154 isolates were obtained from Cave 1 and Cave 2, respectively (Dataset
101	S1). Cave 1 and Cave 2 are geographically close (500 m apart) and have similar
102	geological and climatic conditions. Through 16S rRNA gene sequencing and
103	phylogenetic analysis, the 3,562 bacterial isolates were assigned to 329 species in 102
104	genera (Dataset S2). Overall, 225 species and 201 species were obtained from Cave 1
105	and Cave 2, respectively, among which 97 species were found in both caves. The
106	Shannon index indicates that the cultured bacterial diversities of the two caves
107	exhibited no significant differences (Student's <i>t</i> -test, $p > 0.05$) (Figure 1b).
108	The bacterial isolates were also analyzed according to their origins in the cave
109	environments (i.e., rock, water, or sediments). The results revealed that 129 species

species. We integrated the newly cultured and available reference microbial genomes

110	were isolated from rock samples, 155 were isolated from sediment samples, and 133
111	were isolated from water samples. The Shannon index analysis indicates that the
112	species diversities were significantly different among the three environments
113	(ANOVA, $F = 6.509$, $p < 0.01$), but similar distributions were observed when
114	culture-independent methods were applied (7). The bacterial community in the
115	sediment samples was more diverse than those in the rock samples (Tukey HSD, p $\!<\!$
116	0.05) and water samples (Tukey HSD, $p < 0.01$). Principal coordinates analysis based
117	on the Brey-Curtis distance revealed that the community compositions of the three
118	environments were statistically different (PERMANOVA, $F = 3.06$, $R^2 = 0.135$, $p =$
119	0.001, dotted line covers the 95% confidence interval) (Figure 1c).
120	Composition and representativeness of the cultured bacterial collections from the
121	caves
121 122	caves Taking the isolates from both caves as a whole, the <i>Proteobacteria</i> were the most
121 122 123	caves Taking the isolates from both caves as a whole, the <i>Proteobacteria</i> were the most frequently isolated, followed by <i>Actinobacteria</i> and <i>Firmicutes</i> . <i>Bacteroidetes</i> and
121 122 123 124	caves Taking the isolates from both caves as a whole, the <i>Proteobacteria</i> were the most frequently isolated, followed by <i>Actinobacteria</i> and <i>Firmicutes. Bacteroidetes</i> and <i>Deinococcus–Thermus</i> were occasionally obtained (Dataset S2). At the genus level,
121 122 123 124 125	cavesTaking the isolates from both caves as a whole, the <i>Proteobacteria</i> were the mostfrequently isolated, followed by <i>Actinobacteria</i> and <i>Firmicutes. Bacteroidetes</i> and <i>Deinococcus–Thermus</i> were occasionally obtained (Dataset S2). At the genus level,the most abundant genera were <i>Brevundimonas</i> (13.7%), <i>Caulobacter</i> (6.3%), and
121 122 123 124 125 126	cavesTaking the isolates from both caves as a whole, the Proteobacteria were the mostfrequently isolated, followed by Actinobacteria and Firmicutes. Bacteroidetes andDeinococcus–Thermus were occasionally obtained (Dataset S2). At the genus level,the most abundant genera were Brevundimonas (13.7%), Caulobacter (6.3%), andBosea (5.5%) of α-Proteobacteria; Pseudomonas (8.5%) of γ-Proteobacteria;
121 122 123 124 125 126 127	cavesTaking the isolates from both caves as a whole, the Proteobacteria were the mostfrequently isolated, followed by Actinobacteria and Firmicutes. Bacteroidetes andDeinococcus–Thermus were occasionally obtained (Dataset S2). At the genus level,the most abundant genera were Brevundimonas (13.7%), Caulobacter (6.3%), andBosea (5.5%) of α-Proteobacteria; Pseudomonas (8.5%) of γ-Proteobacteria;Streptomyces (9.9%) and Rhodococcus (7.3%) of Actinobacteria; and Bacillus (8.8%)
121 122 123 124 125 126 127 128	cavesTaking the isolates from both caves as a whole, the Proteobacteria were the mostfrequently isolated, followed by Actinobacteria and Firmicutes. Bacteroidetes andDeinococcus-Thermus were occasionally obtained (Dataset S2). At the genus level,the most abundant genera were Brevundimonas (13.7%), Caulobacter (6.3%), andBosea (5.5%) of α-Proteobacteria; Pseudomonas (8.5%) of γ-Proteobacteria;Streptomyces (9.9%) and Rhodococcus (7.3%) of Actinobacteria; and Bacillus (8.8%)of Firmicutes (Figure 2a).
121 122 123 124 125 126 127 128 129	cavesTaking the isolates from both caves as a whole, the Proteobacteria were the mostfrequently isolated, followed by Actinobacteria and Firmicutes. Bacteroidetes andDeinococcus-Thermus were occasionally obtained (Dataset S2). At the genus level,the most abundant genera were Brevundimonas (13.7%), Caulobacter (6.3%), andBosea (5.5%) of α-Proteobacteria; Pseudomonas (8.5%) of γ-Proteobacteria;Streptomyces (9.9%) and Rhodococcus (7.3%) of Actinobacteria; and Bacillus (8.8%)of Firmicutes (Figure 2a).Taking 97% similarity in the 16S rRNA genes as the threshold for species
121 122 123 124 125 126 127 128 129 130	cavesTaking the isolates from both caves as a whole, the Proteobacteria were the mostfrequently isolated, followed by Actinobacteria and Firmicutes. Bacteroidetes andDeinococcus-Thermus were occasionally obtained (Dataset S2). At the genus level,the most abundant genera were Brevundimonas (13.7%), Caulobacter (6.3%), andBosea (5.5%) of α-Proteobacteria; Pseudomonas (8.5%) of γ-Proteobacteria;Streptomyces (9.9%) and Rhodococcus (7.3%) of Actinobacteria; and Bacillus (8.8%)of Firmicutes (Figure 2a).Taking 97% similarity in the 16S rRNA genes as the threshold for speciesdifferentiation, 166 isolates represented potential new bacterial taxa, accounting for
121 122 123 124 125 126 127 128 129 130 131	cavesTaking the isolates from both caves as a whole, the Proteobacteria were the mostfrequently isolated, followed by Actinobacteria and Firmicutes. Bacteroidetes andDeinococcus-Thermus were occasionally obtained (Dataset S2). At the genus level,the most abundant genera were Brevundimonas (13.7%), Caulobacter (6.3%), andBosea (5.5%) of α-Proteobacteria; Pseudomonas (8.5%) of γ-Proteobacteria;Streptomyces (9.9%) and Rhodococcus (7.3%) of Actinobacteria; and Bacillus (8.8%)of Firmicutes (Figure 2a).Taking 97% similarity in the 16S rRNA genes as the threshold for speciesdifferentiation, 166 isolates represented potential new bacterial taxa, accounting for4.7% of all of the isolates (Table S1). These new taxa belonged to the following

genera: Arthrobacter, Azospirillum, Brevundimonas, Deinococcus, Massilia,
Methylibium, Nocardioides, Noviherbaspirillum, Oleomonas, Paenibacillus,
Paenisporosarcina, Piscinibacter, Pseudogulbenkiania, Pseudomonas, Solimonas,
Sphingomonas, and Zavarzinia (Figure S1). Notably, the isolates representing
Azospirillum and Oleomonas were repeatedly obtained (Table S1), suggesting that
they were abundant in the cave environments. To further evaluate the
representativeness of our isolates in terms of karst cave microbiomes, 4
culture-independent 16S rRNA gene amplicon datasets (NCBI accession Nos.
PRJNA337918, PRJNA497480, PRJNA588777, and PRJNA630353; Dataset S6)
from karst caves were collected and the samples were filtered for quality control.
Among these datasets, samples of PRJNA497480 were collected from another 8 karst
caves in southwestern China (7), and their geological backgrounds are very similar to
those of the two caves investigated in this study. These 4 datasets include 153 samples,
and the operational taxonomic units (OTUs) extracted from these samples were
aligned with the 16S rRNA genes of the 3,562 cave isolates (species cut-off value set
as a 97% 16S rRNA gene similarity). The result show that in terms of relative
abundances, the 3,562 isolates represent 28.7% to 31.1% of the sequences on average
and 75% for the highest sample in the 4 datasets (Figure 2b).
Morphology, genome annotation, and denomination of the new bacterial species
Twenty-four representative strains of the 166 potentially new isolates (Figure S1)
were checked for purity, and 16S rRNA gene online alignment was performed using
up-to-date databases (EzBiocloud and NCBI blast). Unfortunately, the bacterial

154	isolates representing 7 potential novel species were unable to propagate during the
155	subsequent cultivation. Isolates K2R10-124 and K2W31S-24 exhibited more than 98%
156	16S rRNA gene similarity to previously described species. Isolates K1W22B-3 and
157	K1W22B-8 exhibited 99% 16S rRNA gene similarity to each other, and they were
158	assigned as representative strains of one new species. The remaining 14 potential new
159	species were subjected to microscopic observations, phenotype determination using
160	BIOLOG testing, phylogenetic analysis, and genome sequencing. Their morphologies
161	and phylogenies are shown in Figures 3a and 3b, respectively, and their proposed
162	names are listed in Table 1. Detailed descriptions of the new species are provided in
163	Dataset S3, except for Solimonas fluminis K1W22B-7 and Crenobacter cavernae
164	K1W11S- 77^{T} , which have been previously described (23, 24).
165	We tested the abilities of these potential new species to assimilate carbon sources. As
166	is shown in Figure 4a, short-chain fatty acids and amino acids were more frequently
167	assimilated than carbohydrates, particularly polysaccharides, although some
168	monosaccharides such as D-fructose, D-fructose-PO ₄ , and D-glucose were assimilated
169	by approximately half of the tested strains. Other carbon sources such as
170	glucuronamide, glycerol, and Tween 40 were also favored by the majority of the novel
171	cave bacteria. The general genome features of the new bacterial species are listed in
172	Table 2. As is shown in Table 2, the genome sizes of these potential new species range
173	from 2.5 to 6.5 Mb, coding 2,507 to 5,725 proteins. The Clusters of Orthologous
174	Groups (COG) database was used for the classification of the genes in the sequenced
175	genomes (Figure 4b). The results revealed that the highest number of genes contained

AEM

176

177	well as DNA replication and repair (COG-L) for information storage and processing.
178	For cellular processes and signaling, the genes involved in cell
179	wall/membrane/envelope biogenesis and signal transduction are commonly abundant
180	in sequenced genomes. Based on our analysis of the genes associated with
181	metabolism, we found that the cave bacteria preferred carbon sources composed of
182	amino acids (COG-E) and lipids (COG-I), which agreed with the results shown in
183	Figure 4a. We observed that energy production and conversion (COG-C) and
184	inorganic ion transport and metabolism (COG-P) were also abundant in the cave
185	bacterial genomes. Noticeably, a large quantity of the genes in these new bacterial
186	genomes are poorly characterized and their functions remain to be identified
187	(COG-S).
188	Eleven of the 14 new species have flagella, and the genome data mining predicted that
189	they have the capability for locomotive organ generation (Figure 4b). For bacteria
190	living in complicated and nutrient-limited environments, the ability to migrate toward
191	favorable environments (chemotaxis) is of importance for survival. We observed that
192	the genes for chemoreceptors, histidine kinase CheA, and adaptor CheW occurred in
193	11 of the genomes of the new bacteria, and the number of chemoreceptor genes
194	ranged from 2 (K2R01-6 and K1W22B-7) to as many as 46 (K2W22B-5). Biofilm
195	formation has also been reported in regard to the survival of cave bacteria (25-27).
196	Nine of the newly sequenced cave bacterial genomes have genes encoded for
197	polysaccharide biosynthesis. Cross-talk between chemotaxis and biofilm formation

by these genomes are associated with transcription (COG-K), translation (COG-J), as

198	has also been reported recently (28), which indicates that coordination of bacterial
199	behavior may occur in cave microbiomes.
200	Cultured bacterial genomes and metagenomic data predict metabolisms relevant
201	to biogeochemical cycling in karst caves
202	To give an overview of the functional potential of the cultured bacteria from the karst
203	caves, a collection of cave bacterial genomes was established. The collection contains
204	14 newly sequenced bacterial genomes (Table 2) and 204 database-derived genomes,
205	representing the bacterial species found in the cave isolates in this study (Dataset S4).
206	These genomes covered 218 of the species found in the cultured bacterial collection,
207	and accounted for 72.3% of all of the isolates in terms of their relative
208	culture-frequencies. A total of 1,060,824 genes were recognized by CD-HIT and were
209	finally clustered as a non-redundant gene catalog containing 857,889 representative
210	sequences. The non-redundant cave gene catalog was annotated according to the
211	Kyoto Encyclopedia of Genes and Genomes (KEGG), and 7,476 KEGG orthologous
212	(KOs) were identified (Dataset S5). The genes involved in genetic information
213	processing (14.6%) accounted for the largest proportion, followed by signaling and
214	cellular process (11.5%), carbohydrate metabolism (9.4%), amino acid metabolism
215	(7.7%), energy metabolism (4.1%), and other metabolic processes. In addition, we
216	collected 8 metagenome datasets for karst cave sediment, speleothem, and rock
217	surface samples from previous studies (Dataset S6). The datasets were quality
218	controlled, re-annotated, and analyzed. The KOs related to the biogeochemical C/N/S
219	cycling in karst caves were checked in both the cultured genome collection and the

221	isolates, the cultured genome collection and the metagenomic data were used to
222	predict metabolic traits relevant to C/N/S cycling in karst caves.
223	Carbon metabolism. Analyses of the cultured genome collection and the gene
224	catalog of the cave bacteria revealed that poly- β -hydroxybutyrate (PHB) and aromatic
225	compounds may play important roles in biogeochemical carbon cycling in karst caves
226	(Figure 5a). A total of 35.8% of the cultured bacteria in our genome collection contain
227	genes for PHB synthesis, and 33.3% also contain genes for PHB depolymerization
228	(Figure 5a). Previous studies have shown that stalagmite trapped poly aromatic
229	hydrocarbons (29, 30), and aromatic compounds may serve as energy and carbon
230	sources for cave systems. In our dataset, 4-hydroxybenzoate (4HB) degradation genes
231	in the β -ketoadipate pathway were abundant, but the genes encoding
232	3-oxoadipate-CoA-transferases were missing (Figure 5a). We also found that 57 of the
233	genomes, accounting for 26% of all of the isolates, were encoded with genes for
234	carbon monoxide (CO) oxidation (Dataset S6). Although CO is toxic due to its ability
235	to bind metalloproteins, it has a high potential as an electron donor, and thus, it may
236	serve as a favorable carbon and/or energy source in extreme ecosystems (31-33) and
237	in karst caves. Notably, the only cultured USCa bacterium (Methylocapsa gorgona
238	MG08), which is a counterpart of the desired cave bacterial cluster (USC γ) in an
239	acidic environment, has been proved to be able to use CO as an energy source (34).
240	CO oxidation could be coupled with acetate or methane production under anaerobic
241	conditions (35, 36), and under aerobic conditions, it could provide energy for CO_2

metagenomic data. Combined with the relative culture-frequencies of the bacterial

220

AEM

Applied and Environmental Microbiology 242

243	the genome dataset for the existence of the CBB pathway (40), we found the $rbcL$
244	gene in 30 genomes, accounting for 14.9% of the relative abundance.
245	The CO oxidation gene (cox) in karst cave bacterial genomes can be exemplified by
246	our newly sequenced <i>Oleomonas cavernae</i> K1W22B-8 ^T (Table S2 and Figure S2).
247	The K1W22B-8 ^{T} genome harbors CO dehydrogenase genes (<i>coxMSL</i>), the
248	membrane-integral ATPase gene (coxD), and the xdhC-like genes (coxF and coxI)
249	involved in the Mo=S group (41). However, it lacks the genes (<i>coxB</i> , <i>coxC</i> , <i>coxH</i> , and
250	coxK) that were identified in Oligotropha carboxidovorans OM5 (42) and are needed
251	to anchor CO dehydrogenase to the cytoplasmic membrane, suggesting that the CO
252	dehydrogenase in the K1W22B-8 ^T strain may be located in the cytoplasm.
253	Interestingly, a soluble methane monooxygenase-like gene cluster (smoXYB1C1Z),
254	which has been prove to be active on C_2 to C_4 alkanes and alkenes in <i>Mycobacterium</i>
255	<i>chubuense</i> NBB4 (43), was also found in the genome of the K1W22B-8 ^T strain
256	(Figure S2).
257	In accordance with the cultured genome collection, the analyses of the metagenomic
258	data revealed that the genes involved in PHB synthesis and depolymerization, 4HB
259	degradation, and CO oxidation were not only prevalent but were also abundant in
260	cave samples (Figure 5b). In contrast to the cultured genome collection, in which all
261	three genes involved in the conversion from acetyl-CoA to PHB were detected in 80
262	bacterial genomes, acetoacetyl-CoA reductase (PhaB, K00023) was absent in all eight
263	cave metagenome datasets. The distribution of the CO dehydrogenase varied among

fixation through the Calvin-Benson-Bassham (CBB) cycle (37-39). When we mined

the cave metagenome datasets for the different samples, and the Portuguese cave
samples (NCBI Access. Nos. ERR1514431, ERR1514432, and ERR1514433) exhibit
a higher CO oxidation potential than the cave samples from USA (NCBI Access. Nos.
SRR12350322, SRR11676647, SRR11676930, and SRR11678124) and India (NCBI
Access. No. SRR9599867).
Nitrogen metabolism. Based on our analysis, the NtrC family
two-component-system was distributed in 88 of the genomes in the cave bacterial
genome collection, suggesting an intensive regulation of nitrogen metabolism. Eleven
of the genomes in our dataset exhibited the potential to fix dinitrogen into biologically
available ammonia (Figure 5c). The novel <i>Azospirillum cavernae</i> K2W22B-5 ^T , which
was isolated from the water samples and has a high abundance, is representative of
these 11 genomes. The genome of strain K2W22B-5 ^T contains all three key operons
for nitrogen fixation, i.e., <i>nifHDK</i> , <i>nifENX</i> , and <i>nifUSV</i> (Figure S2), which are needed
for encoding the structural part of nitrogenase, the nitrogenase molybdenum-cofactor,
and the Fe-S cluster, respectively (44, 45). Similar to the genetic organization in other
Azospirillum species, there is an $fdxB$ gene (<i>nif</i> -specific ferredoxin III) downstream of
the <i>nifENX</i> operon, and a <i>cysE</i> gene (serine O-acetyltransferase) between the <i>nifUSV</i>
operon and the <i>nifW</i> gene (nitrogenase-stabilizing/protective protein) (46). Nitrogen
fixation demands a large amount of adenosine triphosphate (ATP), and diazotrophic
bacteria have several hydrogenase systems to oxidize the nitrogen fixation byproduct
hydrogen (47). The oxygen tolerant (NiFe)-hydrogenase is wide spread in the domain
of bacteria (48), and its coding genes (hyaAB) was also found in the genome of strain

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

287	More than 50% of the cultured bacteria have the potential to perform one or two steps
288	of dissimilatory nitrate reduction (Figure 5c). The gene cluster responsible for the
289	reduction of dissimilatory nitrate to nitrite in the genome of strain K2W22B-5 ^T is
290	napABCDE, which encodes the enzyme needed to reduce nitrate in periplasm.
291	However, more of the genomes in our dataset contain narGHI genes, which encode a
292	membrane-bound nitrate reductase capable of directly producing a proton motive
293	force during the reduction process (49). The reduction of dissimilatory nitrite to
294	ammonia is encoded by <i>nirBD</i> ; and in the genome of strain K2W22B-5 ^T , the genes
295	for nitrate/nitrite transport are encoded by <i>nrtABCD</i> (Figure S2 and Table S2).
296	In contrast, analysis of the metagenomic data did not find complete dissimilatory
297	nitrate reductase. Either the gamma subunit of the membrane-bound nitrate reductase
298	(Nar I, K00374) or the electron transfer subunit of the periplasmic nitrate reductase
299	(NapB, K02568) was missing. Nitrite reductases were prevalent and abundant in all 8
300	metagenomic datasets (Figure 5d). Nitrogenase exhibited different distributions in the
301	cave metagenome data, and it was being more abundant in Hawaiian cave samples
302	(NCBI Access. Nos. SRR12350322, SRR11676647, SRR11676930, and
303	SRR11678124) than in other samples.
304	Sulfur metabolism. Genes encoding dissimilatory sulfate reduction were rarely
305	detected; however, both the cultured cave bacterial genomes and the metagenomic
306	data contained encoded enzymes needed for assimilatory sulfate/sulfite reduction or
307	the reduction of thiosulfate to sulfide (Figures 5e and 5f). Based on our analysis, 71.1%

308	and 36.1% of the genome collection (Figure 5e) exhibited the potential for the
309	oxidation of thiosulfate and sulfite, respectively, suggesting that thiosulfate and sulfite
310	may be important molecules for the biogeochemical cycling of sulfur in karst caves.
311	Validation of the β -ketoadipate pathway and identification of the "missing"
312	3-oxoadipate-CoA-transferase in the cultured bacterial genomes
313	As was predicted above, the β -ketoadipate pathway for aromatic compound
314	degradation (assigned as the xenobiotics metabolism in the KEGG; Figure 6b) was
315	quite abundant in both the cultured bacterial genomes and the metagenome data.
316	Surprisingly, the genes encoding 3-oxoadipate-CoA-transferase (pcaIJ) were not
317	annotated by the Automatic Annotation Server (KAAS) tools in the cultured genome
318	collection (Figure 5a), but they were annotated in the metagenomics data (Figure 5f;
319	Data accession numbers K01031/K01032). Thus, we extracted the annotated genes
320	(K01031/K01032) from the metagenomic data and performed a blast search against
321	the cultured bacterial genomes. The top 16 hits showing sequence identities of $\geq 47\%$
322	were collected and considered as candidate <i>pcaIJ</i> of the cultured bacterial genomes
323	(Table S3). Based on the NCBI and KEGG annotations, we further manually screened
324	the cultured genome data for any continuous genetic clusters of the β -ketoadipate
325	pathway and any <i>pcaIJ</i> candidates. We obtained a total of 55 genomes that harbored
326	candidate 3-oxoadipate-CoA-transferase genes within the genetic clusters of the
327	β -ketoadipate pathway. Two representative genetic clusters from the genomes of
328	strains K2W22B-5 ^T and K1R23-30 ^T are shown in Figure 6a. The sequences of <i>pcaI</i>
329	and pcaJ, which encode the two subunits of 3-oxoadipate-CoA-transferase, were

AEM

Applied and Environmental Microbiology

330	extracted from 55 genomes and were concatenated for phylogenetic analysis. The
331	results revealed that the candidate 3-oxoadipate-CoA-transferase genes were grouped
332	into two clusters. Cluster I was composed of 26 candidate genes, which mainly
333	originated from the Pseudomonas species that has been extensively investigated for
334	aromatic compound degradation. Cluster II was composed of 29 candidate genes, and
335	their hosts were very diverse (Figure 6b). We tested two strains (K2W22B-5 ^T and
336	K1R23- 30^{T}) and confirmed that both were able to grow with 4-hydroxybenzoate as
337	the sole carbon source (Figure S3). We further cloned and expressed their candidate
338	pcaIJ in E. coli. The expressed PcaIJ products were purified and
339	3-oxoadipate-CoA-transferase activities were demonstrated (Figure 6d).
340	Discussion
341	In this study, we performed large-scale, intensive cultivation of cave microbiomes,
342	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies
342 343	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies of the cultivation of cave bacteria have suggested that the cultivation of cave
342 343 344	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies of the cultivation of cave bacteria have suggested that the cultivation of cave microorganisms could be challenging because the conventional culture media used in
342 343 344 345	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies of the cultivation of cave bacteria have suggested that the cultivation of cave microorganisms could be challenging because the conventional culture media used in labs would result in osmotic stress on cave bacterial cells that are adapted to
342 343 344 345 346	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies of the cultivation of cave bacteria have suggested that the cultivation of cave microorganisms could be challenging because the conventional culture media used in labs would result in osmotic stress on cave bacterial cells that are adapted to nutrient-poor cave environments (50). To increase the cultivability of cave bacteria,
342 343 344 345 346 347	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies of the cultivation of cave bacteria have suggested that the cultivation of cave microorganisms could be challenging because the conventional culture media used in labs would result in osmotic stress on cave bacterial cells that are adapted to nutrient-poor cave environments (50). To increase the cultivability of cave bacteria, we used the R2A medium, which has been demonstrated to be effective for
 342 343 344 345 346 347 348 	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies of the cultivation of cave bacteria have suggested that the cultivation of cave microorganisms could be challenging because the conventional culture media used in labs would result in osmotic stress on cave bacterial cells that are adapted to nutrient-poor cave environments (50). To increase the cultivability of cave bacteria, we used the R2A medium, which has been demonstrated to be effective for oligotrophs (51-53). We also adopted a strategy that transferred all of the visible
 342 343 344 345 346 347 348 349 	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies of the cultivation of cave bacteria have suggested that the cultivation of cave microorganisms could be challenging because the conventional culture media used in labs would result in osmotic stress on cave bacterial cells that are adapted to nutrient-poor cave environments (50). To increase the cultivability of cave bacteria, we used the R2A medium, which has been demonstrated to be effective for oligotrophs (51-53). We also adopted a strategy that transferred all of the visible colonies for sequential cultivation. Although this strategy was laborious and contained
 342 343 344 345 346 347 348 349 350 	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies of the cultivation of cave bacteria have suggested that the cultivation of cave microorganisms could be challenging because the conventional culture media used in labs would result in osmotic stress on cave bacterial cells that are adapted to nutrient-poor cave environments (50). To increase the cultivability of cave bacteria, we used the R2A medium, which has been demonstrated to be effective for oligotrophs (51-53). We also adopted a strategy that transferred all of the visible colonies for sequential cultivation. Although this strategy was laborious and contained a bias that could possibly be overcome by using diluted nutrient culture media, lower
 342 343 344 345 346 347 348 349 350 351 	and 3,562 bacterial isolates representing 329 species were obtained. Previous studies of the cultivation of cave bacteria have suggested that the cultivation of cave microorganisms could be challenging because the conventional culture media used in labs would result in osmotic stress on cave bacterial cells that are adapted to nutrient-poor cave environments (50). To increase the cultivability of cave bacteria, we used the R2A medium, which has been demonstrated to be effective for oligotrophs (51-53). We also adopted a strategy that transferred all of the visible colonies for sequential cultivation. Although this strategy was laborious and contained a bias that could possibly be overcome by using diluted nutrient culture media, lower temperatures, or an extended cultivation time, we still obtained the largest collection

our cave isolates represent 75% for the highest and about 28.7–31.1% on average of
the 16S rRNA gene abundances from previous datasets for karst caves. This result
verifies that our cultures representative the major microbial community in karst caves
relatively well. Our culture collection is characterized by the predominance of the
Proteobacteria, Actinobacteria, and Firmicutes members, but it also contains other
bacterial groups found in cave habitats, including Bacteroide and Deinococcus-
Thermus. Notably, Proteobacteria and Actinobacteria represent the most ubiquitous
bacterial groups detected in cave environments (54-56). At the genus level,
Brevundimonas of Proteobacteria was most frequently cultivated in this study, and it
has been found to be abundant in other oligotrophic caves (57). The genus
Streptomyces of Actinomycetes was also predominant in this study, and the members
of the cave-originated Streptomyces have been used for the selection of new
antibiotics (58). Although the two caves we studied have not been open to tourists,
they both contained Bacillus and Paenibacillus of the phylum Firmicutes, which have
also been found in a cave open to tourists, i.e., Kartchner Caverns (54).
Microbial metabolisms are the major driving force of biogeochemical cycling in cave
ecosystems. The results of culture-independent methods have predicted the general
metabolic reactions of these microbial communities, but which organism plays what
role remains to be specified. In this study, we collected 204 cultured bacterial
reference genomes from public databases that corresponded to our bacterial isolates

of cave bacteria to date. Based on the evaluation using the 16S rRNA gene abundance,

and sequenced 14 new bacterial species. These 218 bacterial genomes were analyzed

374	to dissect their specific metabolic traits that are relevant to the biogeochemical cycling
375	of C/N/S in cave environments. For examples, the CO oxidation and $N_{\rm 2}$ fixation
376	abilities of the newly cultivated Oleomonas and Azospirillum species, respectively,
377	may reduce carbon and nitrogen limitations in cave environments. In nutrient limited
378	habitats, microorganisms are forced to use any available nutrient to survive (59). A
379	range of bacteria in Movile Cave were able to grow on one-carbon (C_1) compounds
380	(60). In addition to Oleomonas species, we also obtained facultative methylotrophic
381	bacteria such as Methylorubrum aminovorans, M. thiocyanatum, Methylobacterium
382	hispanicum, and Methylibium petroleiphilum. Recently, a clade of uncultured
383	methanotrophs that are believed to have a high affinity for oxidizing atmospheric
384	methane in caves have received a great deal of attention (15). Although methane
385	oxidization was not confirmed, the Oleomonas species found in our study exhibit the
386	potential to oxidize C_2 to C_4 alkanes, providing a new perspective for research on
387	alkane oxidation in cave environments. Regarding nitrogen limitation, evidence has
388	been found for the existence of nitrogen fixation genes in other cave water niches (61).
389	We determined that more than 6% of all of the isolated strains, including the newly
390	cultivated Azospirillum species, have the potential to fix N_2 into ammonia. Notably,
391	the Azospirillum griseum in eutrophic river water (62), which is the closest
392	phylogenetic neighbor of the newly cultivated cave Azospirillum species, does not
393	contain any nitrogen fixing genes. Future studies of these two Azospirillum species
394	may provide hints as to the evolution of nitrogen fixation at the genomic level.
395	The β -ketoadipate pathway is widely distributed in soil bacteria and fungi (63), but it

396	has not been documented in the microbiomes in karsts caves. In this study, we
397	observed abundant genes encoding the β -ketoadipate pathway in both the cultivated
398	bacterial genomes and the previously reported metagenomic datasets (NCBI Access.
399	Nos. ERR1514431, ERR1514432, ERR1514433, SRR9599867, SRR12350322,
400	SRR11676647, SRR11676930, and SRR11678124). We further found that the <i>pcalJ</i>
401	genes from 55 of the cultivated genomes grouped into two clusters according to their
402	sequences, and we experimentally identified the 3-oxoadipate-CoA-transferase
403	activities of two of the newly cultivated representative bacterial strains. The results of
404	this study demonstrate the power of studies conducted using a combination of
405	culture-dependent and metagenomic methods, and the <i>pcaIJ</i> sequences of the two
406	clusters provide highly valuable information for improving future <i>pcalJ</i> annotation
407	using the KAAS tools.
408	Materials and methods
409	Caves. All of the samples were collected from two unexploited karst caves designated
410	as Cave 1 (28°12'37.74" N; 107°13'38.34" E) and Cave 2 (28°12'35.94" N;
411	107°13'39.66" E) in the Kuankuoshui Nature Reserve, Zunyi, Guizhou Province,
412	China. The nature reserve was established in 2007 due to the subtropical forests and
413	rare animals it contains. Except for its clasolite-based erosional landform in the
414	
	central-southern areas, the nature reserve predominantly contains karst landforms
415	central-southern areas, the nature reserve predominantly contains karst landforms developed from carbonate rocks. The annual average temperature of the nature
415 416	central-southern areas, the nature reserve predominantly contains karst landforms developed from carbonate rocks. The annual average temperature of the nature reserve is 11.6–15.2°C, and the annual average relative humidity is more than 82%

418	hidden on a hillside in the forest. Cave 1 is 908 m above sea level and 400 m in length,
419	and the humidity and temperature at the time of the sampling were 75–80% and 21–
420	22°C, respectively. Cave 2 is 930 m above sea level and 750 m in length, and the
421	humidity and temperature at the time of sampling were 75–85% and 20–23°C,
422	respectively.
423	Sample collection. The sampling procedure has been described by Zhang et al. (65).
424	The samples were collected from the entrance to the deep part of the cave, and each
425	sampling site was at least 100 m from the next site. Briefly, 10 ml of seeping or
426	stream water were collected in 15 ml sterile centrifuge tubes at each site. Ten grams of
427	shallow sediment (~1–5 cm) were collected from three sites after removing the
428	surface layer (~1 cm). Rock samples were collected from five different orientations at
429	each sampling site and were sealed in germfree zip-locked bags (66). All of the
430	samples were kept at 4°C until further processing. A total of 42 samples were obtained
431	from the two caves (Cave 1 and Cave 2), of which 20 samples were collected from
432	Cave 1 (4 sediment, 8 water, and 8 rock samples) and 22 samples were collected from
433	Cave 2 (6 sediment, 11 water, and 5 rock samples).
434	Bacterial isolation and cultivation. Two grams of sediment sample were suspended
435	in 18 ml of sterile saline solution (NaCl, 0.85%, m/v) and were shaken for 30 min at
436	room temperature. Two milliliters of a water sample were added to 18 ml of sterile
437	saline solution and mixed thoroughly. The rock samples were weighed and placed in
438	enough sterile saline solution to achieve a weight to volume ratio of 1:10, and then,
439	they were shaken for 30 mins at room temperature. Ten-fold serial dilutions were

Accepted Manuscript Posted Online using sterile saline solution and 0.2 ml of the diluent with an appropriate 440 441 concentration was spread on R2A medium (Reasoner's 2A agar) (67) in triplicate. The 442 spread plates were incubated at 30° C for 48-72 h, and then, the colonies were picked 443 and re-streaked to confirm their purity. 444 Identification of the cave bacteria. Amplification of 16S rRNA genes was 445 accomplished using universal bacterial primers 27F (5'-AGAGTTTGATCTGGCTCAG-3', corresponding to positions 8 to 27 of E. coli) and 446 1492R (5'-GGTTACCTTGTTACGACTT-3', corresponding to positions 1510 to 447 448 1492 of E. coli;). The cells were collected from the agar plates and lysed in 2 µl of 449 alkaline lysis solution (0.2 M NaOH, 1% SDS) for 5 min, and then, 98 µl of double 450 distilled water was added to the lysis system and was mixed thoroughly as an Microbiology 451 amplification template. 452 The 50 µl of polymerase chain reaction (PCR) mixture contained 1 µl of template, 1 453 μ l (10 pmol) of each primer, and 47 μ l of 1.1 × Golden Star T6 Super PCR Mix 454 (TsingKe Biotech. Beijing). The amplification conditions were as follows: initial 455 denaturation (2 min at 94°C), 30 cycles of denaturing (30 sec at 94°C), annealing (30 456 sec at 55°C), extension (1 min at 72°C), and a final extension (72°C for 5 min). Five AEN 457 microliters of PCR products were visualized on a 1% agarose gel stained with YeaRed 458 Nucleic Acid Gel Stain (Yeasen Biotech, Shanghai). 459 The amplified 16S rRNA genes were sequenced and then aligned using blast+ against 460 NCBI's 16SMicrobial database (68). The biochemical characteristics of the novel 461 species were determined using Biolog GEN III kits according to the manufacturer's Microbiology

Applied and Environ<u>mental</u>

Applied and Environmental

AEM

Applied and Environmental Microbiology 462

462	their close relatives were calculated using Churl ab's online ANI Calculater (60)
403	then close relatives were calculated using ChunLab's onnine ANI Calculator (09).
464	Digital DNA-DNA hybridization (dDDH) was performed on the novel species and
465	their close relatives using the Genome-to-Genome Distance Calculator (GGDC2.1)
466	(70).
467	Diversity and phylogenetic analysis. The diversity indices were calculated using the
468	free license statistical software PAST (71). All of the statistical analyses of the data
469	were performed in R version 3.4.2 (https://www.R-project.org/). The normal
470	distributions of the data were checked using the Shapiro-Wilk test, and the
471	homoscedasticity of variances was analyzed using Bartlett's test. The significant
472	differences in the variances of the parameters were evaluated using the analysis of
473	variance (ANOVA) test or the Student's t-test, and post hoc comparisons were
474	conducted using Tukey's honest significant differences test. The principal coordinates
475	analysis (PCoA) was conducted using the vegan package in R
476	(https://CRAN.R-project.org/package=vegan). To statistically support the visual
477	clustering of the bacterial communities in the PCoA analyses, the different cave
478	substrates were compared using permutation-based hypothesis tests (PERMANOVA).
479	Visualization of the diversity and distributions of the cave isolates was performed
480	using the ggplot2 package in R unless otherwise stated (72). The Venn diagrams were
481	plotted using the VennDiagram package in R (73).
482	The phylogenetic trees were established using the neighbor-joining algorithm. The
483	relative evolutionary distances among the sequences were calculated using the

instructions. The average nucleotide identity (ANI) value between new species and

484	Kimura 2-parameter model, and the tree topology was statistically evaluated using
485	1000 bootstrap resampling (74). The phylogenetic trees were constructed using the
486	MEGA7 software (75), and they were further modified using iTOL (Interactive Tree
487	Of Life) (76).
488	Whole genome sequencing and functional annotation. The genomic DNA was
489	extracted using a Wizard Genomic DNA Purification Kit (Promega, USA) according
490	to the manufacturer's instructions, and then, it was sheared into 10 kb segments using
491	a Covaris g-TUBE (Covaris, USA). AMPure XP beads (Beckman Coulter, USA) were
492	used to purify the segmented DNA, and a PacBio SMRTbell Template Prep Kit
493	(PacBio, USA) was used to prepare the segments for sequencing. The SMRTbell
494	templates were annealed with primers and combined with polymerase using a PacBio
495	DNA/Polymerase Kit (PacBio, USA), and finally, they were sequenced on a PacBio
496	RS II platform.
497	The sequence assembly was performed in the PacBio SMRT Analysis version 2.3.0
498	platform using the RS_HGAP_Assembly.2 protocol (77). FinisherSC was
499	subsequently used to further polish the assemblies (78). The final assemblies were
500	annotated following the NCBI Prokaryotic Genome Annotation Pipeline (79), and
501	their metabolic potentials were predicted using the KEGG Automatic Annotation
502	Server (KAAS) (80) and the eggnog mapper (81). The completeness of each bacterial
503	genome was evaluated using BUSCO (82). The non-redundant gene catalog of the
504	cultured cave bacteria was obtained using CD-HIT (83). Amino acid sequences with
505	more than 90% similarity and 80% coverage were assigned as one cluster.

506	16S rRNA gene amplicon and metagenome analysis. 16S rRNA amplicon and the
507	metagenomes of the cave samples were downloaded from the NCBI Sequence Read
508	Archive (SRA) using the sra-toolkit v2.8.2. For the 16S rRNA gene amplicon analysis,
509	VSEARCH v0.9.11 was used to merge paired end sequences and for quality control
510	$(fastq_maxee = 0.01)$ (84). The singletons and chimeras were removed, and the OTUs
511	were obtained using the UNOISE algorithm in USEARCH v11.0.667 (85, 86).
512	Non-bacterial sequences and sequences representing OTUs with an average relative
513	abundance of less than 0.00001 were filtered out using QIIME v1.9.1 (87). Blast+
514	v2.10.1 was used to construct the cultured cave bacteria 16S rRNA gene database and
515	to align the amplicon data against this database (68).
516	The quality control of the metagenome data was performed using KneadData v0.7.4
517	(http://huttenhower.sph.harvard.edu/kneaddata), a sliding window was set as 4 bp to
518	filter bases with a quality value of less than 20, and the filtered sequences with a
519	length of less than 50 bp were dropped. Samples with less than 10,000 reads after
520	quality control were removed. The resulting sequences were assembled using
521	MEGAHIT v1.2.9 (88). Prokka v1.14.6 was used for the gene annotation (89), and
522	then, CD-HIT v4.8.1 was used to construct a non-redundant gene catalog (83). The
523	nucleotide sequences in the gene catalog were translated into amino acid sequences
524	using EMBOSS v6.6.0 (90), and then, they were functionally annotated using
525	eggnog-mapper v2.0.1 (81). Salmon v1.3.0 was used to quantify the genes in each
526	sample (91).
527	3-oxoadipate-CoA transferase expression, purification, and activity assay. The

AEM

Applied and Environmental Microbiology

528	bacterial strains, plasmids, and primers used for the 3-oxoadipate-CoA transferase
529	expression are listed in Table 3. The genomic DNA of strains $K2W22B-5^{T}$ and
530	K1R23-30 ^T was prepared as described above. PCR amplification of the target DNA
531	fragments was performed using Phusion High-Fidelity DNA polymerase (New
532	England Biolabs, USA). The vector plasmids and DNA fragments were digested using
533	restriction endonucleases Nde I and Hind III (New England Biolabs, USA), and then,
534	they were ligated using T4 DNA ligase (New England Biolabs, USA). After the
535	ligation, pcaI and pcaJ were given a 6xHis-tag at N-terminus and C-terminus,
536	respectively.
537	To prepare the 3-oxoadipate-CoA transferase of strains K2W22B-5 ^T and K1R23-30 ^T ,
538	E. coli BL21 (DE3) carrying pET-28a-k5pcaIJ and pET-28a-30pcaIJ were grown in
539	Luria-Bertani (LB) broth supplemented with 50 μ g/ml of kanamycin at 37°C until the
540	cell density (OD600) reached 0.3–0.4. The protein expression was induced using 0.3
541	mM IPTG at 16°C overnight. The cells were harvested through centrifugation and
542	then, they were lysed using ultrasonication. The protein purification was performed
543	with a Hisbind purification kit (Novagen, USA) following the manufacturer's
544	instructions. An Amicon Ultra-15 centrifugal filter (Merck Millipore, USA) was used
545	for the buffer desalting and protein concentration.
546	The 3-oxoadipate-CoA transferase assays were performed as described by MacLean et
547	al. (92). The assay mixture included 200 mM Tris-HCl (pH 8.0), 40 mM MgCl ₂ , 10
548	mM 3-oxoadipate, and 0.4 mM succinyl-CoA (Sigma-Aldrich, USA) with a final
549	volume of 200 μ l (path length, 0.52 cm). Ninety-six well microtiter plates with UV

AEM

Applied and Environmental Microbiology

<u> </u>		
i pt	550	transparent, flat bottoms (Corning, USA) and a multimode plate reader (PerkinElmer,
uscr	551	USA) were used to monitor the formation of 3-oxoadipyl-CoA, with Mg^{2+} at 305 nm
Man	552	over a temperature range of 23 to 24°C. The molar extinction coefficient of 16,300
ed /	553	M^{-1} cm ⁻¹ corresponding to the 3-oxoadipyl-CoA:Mg ²⁺ complex was used to calculate
cept	554	the productivity (93).
Ac	555	Data availability. The 16S rRNA genes of the cave bacterial isolates in this study are
	556	presented in Dataset S1. The 14 newly sequenced cave bacterial genomes have been
	557	deposited in the NCBI GenBank and are available under BioProject PRJNA490657
	558	(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA490657). The accessions of all of
	559	the bacterial genomes analyzed in this study are presented in Dataset S3. The
ogy	560	accessions and sample descriptions of the 16S rRNA gene amplicon and metagenome
icrobio	561	data used in this study are presented in Dataset S7. The representative strains of the
W	562	previously described bacterial species obtained in this study are publicly available in
ζ.	563	the China General Microbiological Culture Collection Center (CGMCC), and the

564 accession numbers of each strains are listed in Dataset S8.

- 565 Acknowledgements
- 566 This study was financially supported by the National Natural Science Foundation of 567 China (Grant No. 91951208) and the Ministry of Science and Technology of China 568 (Grant No. 2014FY120100). The funders had no role in the study's design, data collection, and interpretation or in the decision to submit the work for publication. 569 570

571 References

572	1.	Gabriel CR, Northup DE. 2013. Microbial ecology: caves as an extreme
573		habitat, p 85-108. In Cheeptham N (ed), Cave microbiomes: a novel resource
574		for drug discovery. Springer, New York.
575	2.	Kuzmina LY, Galimzianova NF, Abdullin SR, Ryabova AS. 2012. Microbiota
576		of the Kinderlinskaya cave (South Urals, Russia). Microbiology 81:251-258.
577	3.	Ortiz M, Neilson JW, Nelson WM, Legatzki A, Byrne A, Yu Y, Wing RA,
578		Soderlund CA, Pryor BM, Rd PL. 2013. Profiling bacterial diversity and
579		taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ.
580		Microb Ecol 65:371-383.
581	4.	Hershey OS, Kallmeyer J, Wallace A, Barton MD, Barton HA. 2018. High
582		microbial diversity despite extremely low biomass in a deep karst aquifer.
583		Front Microbiol 9:13.
584	5.	Barton HA, Jurado V. 2007. What's up down there? Microbial diversity in
585		caves, p 132-138. In Schaechter M (ed), Microbe. ASM Press, Washington.
586	6.	Zhang Z-F, Cai L. 2019. Substrate and spatial variables are major determinants
587		of fungal community in karst caves in Southwest China. J Biogeogr 00:1-15.
588	7.	Zhu H-Z, Zhang Z-F, Zhou N, Jiang C-Y, Wang B-J, Cai L, Liu S-J. 2019.
589		Diversity, distribution and co-occurrence patterns of bacterial communities in
590		a karst cave system. Front Microbiol 10:1726.
591	8.	Rusznyák A, Akob DM, Nietzsche S, Eusterhues K, Totsche KU, Neu TR,
592		Frosch T, Popp J, Keiner R, Geletneky J, Katzschmann L, Schulze E-D, Küsel

593		K. 2012. Calcite biomineralization by bacterial isolates from the recently
594		discovered pristine karstic Herrenberg cave. Appl Environ Microbiol 78:1157.
595	9.	Wu Y, Tan L, Liu W, Wang B, Wang J, Cai Y, Lin X. 2015. Profiling bacterial
596		diversity in a limestone cave of the western Loess Plateau of China. Front
597		Microbiol 6:244.
598	10.	Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y,
599		Pearson A, Macalady JL. 2012. Community genomic analysis of an extremely
600		acidophilic sulfur-oxidizing biofilm. ISME J 6:158-170.
601	11.	Kimble JC, Winter AS, Spilde MN, Sinsabaugh RL, Northup DE. 2018. A
602		potential central role of Thaumarchaeota in N-cycling in a semi-arid
603		environment, Fort Stanton Cave, Snowy River passage, New Mexico, USA.
604		FEMS Microbiol Ecol 94:17.
605	12.	Zhao R, Wang H, Yang H, Yun Y, Barton H. 2016. Ammonia oxidizing archaea
606		dominant over bacterial ammonia oxidizers within alkaline cave sediments.
607		
		Geomicrobiol J 34:511-523.
608	13.	Geomicrobiol J 34:511-523. Nguyễn-Thuỳ D, Schimmelmann A, Nguyễn-Văn H, Drobniak A, Lennon JT,
608 609	13.	Geomicrobiol J 34:511-523. Nguyễn-Thuỳ D, Schimmelmann A, Nguyễn-Văn H, Drobniak A, Lennon JT, Tạ PH, Nguyễn NTÁ. 2017. Subterranean microbial oxidation of atmospheric
608 609 610	13.	Geomicrobiol J 34:511-523. Nguyễn-Thuỳ D, Schimmelmann A, Nguyễn-Văn H, Drobniak A, Lennon JT, Tạ PH, Nguyễn NTÁ. 2017. Subterranean microbial oxidation of atmospheric methane in cavernous tropical karst. Chem Geol 466:229-238.
608 609 610 611	13. 14.	Geomicrobiol J 34:511-523. Nguyễn-Thuỳ D, Schimmelmann A, Nguyễn-Văn H, Drobniak A, Lennon JT, Tạ PH, Nguyễn NTÁ. 2017. Subterranean microbial oxidation of atmospheric methane in cavernous tropical karst. Chem Geol 466:229-238. Webster KD, Drobniak A, Etiope G, Mastalerz M, Sauer PE, Schimmelmann
608 609 610 611 612	13. 14.	Geomicrobiol J 34:511-523. Nguyễn-Thuỳ D, Schimmelmann A, Nguyễn-Văn H, Drobniak A, Lennon JT, Tạ PH, Nguyễn NTÁ. 2017. Subterranean microbial oxidation of atmospheric methane in cavernous tropical karst. Chem Geol 466:229-238. Webster KD, Drobniak A, Etiope G, Mastalerz M, Sauer PE, Schimmelmann A. 2018. Subterranean karst environments as a global sink for atmospheric
608 609 610 611 612 613	13. 14.	Geomicrobiol J 34:511-523. Nguyễn-Thuỳ D, Schimmelmann A, Nguyễn-Văn H, Drobniak A, Lennon JT, Tạ PH, Nguyễn NTÁ. 2017. Subterranean microbial oxidation of atmospheric methane in cavernous tropical karst. Chem Geol 466:229-238. Webster KD, Drobniak A, Etiope G, Mastalerz M, Sauer PE, Schimmelmann A. 2018. Subterranean karst environments as a global sink for atmospheric methane. Earth Planet Sci Lett 485:9-18.
608 609 610 611 612 613 614	13.14.15.	Geomicrobiol J 34:511-523. Nguyễn-Thuỳ D, Schimmelmann A, Nguyễn-Văn H, Drobniak A, Lennon JT, Tạ PH, Nguyễn NTÁ. 2017. Subterranean microbial oxidation of atmospheric methane in cavernous tropical karst. Chem Geol 466:229-238. Webster KD, Drobniak A, Etiope G, Mastalerz M, Sauer PE, Schimmelmann A. 2018. Subterranean karst environments as a global sink for atmospheric methane. Earth Planet Sci Lett 485:9-18. Zhao R, Wang H, Cheng X, Yun Y, Qiu X. 2018. Upland soil cluster gamma

615		dominates the methanotroph communities in the karst Heshang Cave. FEMS
616		Microbiol Ecol 94:fiy192.
617	16.	Baskar S, Baskar R, Mauclaire L, Mckenzie JA. 2006. Microbially induced
618		calcite precipitation in culture experiments: possible origin for stalactites in
619		Sahastradhara caves, Dehradun, India. Currentence 90:58-64.
620	17.	Baskar S, Baskar R, Routh J. 2011. Biogenic evidences of moonmilk
621		deposition in the Mawmluh cave, Meghalaya, India. Geomicrobiol J
622		28:252-265.
623	18.	Peck SB. 1986. Bacterial deposition of iron and manganese oxides in North
624		American caves. J Caves Karst Stud 48:26-30.
625	19.	Hill CA. 2011. Origin of black deposits in caves. J Caves Karst Stud 44:15-19.
626	20.	Adam D, Maciejewska M, Naome A, Martinet L, Coppieters W, Karim L,
627		Baurain D, Rigali S. 2018. Isolation, characterization, and antibacterial
628		activity of hard-to-culture Actinobacteria from cave moonmilk deposits.
629		Antibiotics (Basel) 7:20.
630	21.	Chen WH. 2006. An outline of speleology research progress. Geological
631		Review 52:65–74. (In Chinese)
632	22.	Zhang YH, Zhu DH. 2012. Large karst caves distribution and development in
633		China. Journal of Guilin University of Technology 32:20–28. (In Chinese)
634	23.	Lee Y, Lee B, Lee K, Jeon CO. 2018. Solimonas fluminis sp. nov., isolated
635		from a freshwater river. Int J Syst Evol Microbiol 68:2755-2759.
636	24.	Zhu H-Z, Jiang C-Y, Liu S-J. 2019. Crenobacter cavernae sp. nov., isolated

637		from a karst cave, and emended description of the genus Crenobacter. Int J
638		Syst Evol Microbiol 69:476-480.
639	25.	Macalady JL, Jones DS, Lyon EH. 2007. Extremely acidic, pendulous cave
640		wall biofilms from the Frasassi cave system, Italy. Environ Microbiol
641		9:1402-1414.
642	26.	Urzì C, De LF, Bruno L, Albertano P. 2010. Microbial diversity in paleolithic
643		caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros,
644		Spain). Microb Ecol 60:116-129.
645	27.	Banerjee S, Joshi SR. 2013. Insights into cave architecture and the role of
646		bacterial biofilm. Proc Natl Acad Sci India Sect B Biol Sci 83:277-290.
647	28.	Huang Z, Wang Y-H, Zhu H-Z, Andrianova EP, Jiang C-Y, Li D, Ma L, Feng J,
648		Liu Z-P, Xiang H, Zhulin IB, Liu S-J. 2019. Cross talk between chemosensory
649		pathways that modulate chemotaxis and biofilm formation. mBio
650		10:e02876-18.
651	29.	Perrette Y, Poulenard J, Saber A-I, Fanget B, Guittonneau S, Ghaleb B,
652		Garaudee S. 2008. Polycyclic aromatic hydrocarbons in stalagmites:
653		occurrence and use for analyzing past environments. Chem Geol 251:67-76.
654	30.	Marques ELS, Silva GS, Dias JCT, Gross E, Costa MS, Rezende RP. 2019.
655		Cave drip water-related samples as a natural environment for aromatic
656		hydrocarbon-degrading bacteria. Microorganisms 7:33.
657	31.	Wu L, Wang R. 2005. Carbon monoxide: endogenous production,
658		physiological functions, and pharmacological applications. Pharmacol Rev

- AEM
- Applied and Environmental Microbioloay

- 659
 57:585-630.
- Grahame DA, DeMoll E. 1995. Substrate and accessory protein requirements
 and thermodynamics of acetyl-CoA synthesis and cleavage in *Methanosarcina barkeri*. Biochemistry 34:4617-4624.
- 663 33. Robb FT, Techtmann SM. 2018. Life on the fringe: microbial adaptation to664 growth on carbon monoxide. F1000Res 7.
- 665 34. Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich
- 666 N, von Bergen M, Herbold C, Wagner M, Richter A, Svenning MM. 2019.
- 667 Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad
 668 Sci U S A 116:8515-8524.

- 669 35. Sant'Anna FH, Lebedinsky AV, Sokolova TG, Robb FT, Gonzalez JM. 2015.
- 670 Analysis of three genomes within the thermophilic bacterial species
- 671 *Caldanaerobacter subterraneus* with a focus on carbon monoxide
- 672 dehydrogenase evolution and hydrolase diversity. BMC Genomics 16:757.
- 673 36. Techtmann SM, Colman AS, Robb FT. 2009. 'That which does not kill us only
- 674 makes us stronger': the role of carbon monoxide in thermophilic microbial
- 675 consortia. Environ Microbiol 11:1027-1037.
- 676 37. Meyer O, Schlegel HG. 1983. Biology of aerobic carbon monoxide-oxidizing
 677 bacteria. Annu Rev Microbiol 37:277-310.
- 67838.King GM. 2003. Molecular and culture-based analyses of aerobic carbon
- 679 monoxide oxidizer diversity. Appl Environ Microbiol 69:7257-7265.
- 680 39. King GM, Weber CF. 2007. Distribution, diversity and ecology of aerobic

681		CO-oxidizing bacteria. Nat Rev Microbiol 5:107-118.
682	40.	Sato T, Atomi H. 2010. Microbial inorganic carbon fixation, In Encyclopedia
683		of life sciences. John Wiley & Sons, Ltd. Chichester.
684	41.	Pelzmann A, Ferner M, Gnida M, Meyer-Klaucke W, Maisel T, Meyer O. 2009.
685		The CoxD protein of oligotropha carboxidovorans is a predicted AAA+
686		ATPase chaperone involved in the biogenesis of the CO dehydrogenase
687		[CuSMoO2] cluster. J Biol Chem 284:9578-9586.
688	42.	Hille R, Dingwall S, Wilcoxen J. 2015. The aerobic CO dehydrogenase from
689		oligotropha carboxidovorans. J Biol Inorg Chem 20:243-251.
690	43.	Martin KE, Ozsvar J, Coleman NV. 2014. SmoXYB1C1Z of Mycobacterium sp.
691		strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active
692		on C-2 to C-4 alkanes and alkenes. Appl Environ Microbiol 80:5801-5806.
693	44.	Frazzon J, Schrank IS. 1998. Sequencing and complementation analysis of the
694		nifUSV genes from Azospirillum brasilense. FEMS Microbiol Lett
695		159:151-158.
696	45.	Steenhoudt O, Vanderleyden J. 2000. Azospirillum, a free-living
697		nitrogen-fixing bacterium closely associated with grasses: genetic,
698		biochemical and ecological aspects. FEMS Microbiol Rev 24:487-506.
699	46.	Sant'Anna FH, Almeida LG, Cecagno R, Reolon LA, Siqueira FM, Machado
700		MR, Vasconcelos AT, Schrank IS. 2011. Genomic insights into the versatility
701		of the plant growth-promoting bacterium Azospirillum amazonense. BMC
702		Genomics 12:409.

703	47.	Bothe H, Schmitz O, Yates MG, Newton WE. 2010. Nitrogen fixation and
704		hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529-551.
705	48.	Vignais PM, Billoud B. 2007. Occurrence, classification, and biological
706		function of hydrogenases: an overview. Chem Rev 107:4206-4272.
707	49.	Moreno-Vivian C, Cabello P, Martinez-Luque M, Blasco R, Castillo F. 1999.
708		Prokaryotic nitrate reduction: molecular properties and functional distinction
709		among bacterial nitrate reductases. J Bacteriol 181:6573-6584.
710	50.	Barton HA. 2006. Introduction to cave microbiology: a review for the
711		non-specialist. J Caves and Karst Stud 2:43-54.
712	51.	Gibbs RA, Hayes CR. 1988. The use of R2A medium and the spread plate
713		method for the enumeration of heterotrophic bacteria in drinking water. Lett
714		Appl Microbiol 6:19-21.
715	52.	Massa S, Caruso M, Trovatelli F, Tosques M. 1998. Comparison of plate count
716		agar and R2A medium for enumeration of heterotrophic bacteria in natural
717		mineral water. World J Microbiol Biotechnol 14:727-730.
718	53.	van der Linde K, Lim BT, Rondeel JM, Antonissen LP, de Jong GM. 1999.
719		Improved bacteriological surveillance of haemodialysis fluids: a comparison
720		between tryptic soy agar and Reasoner's 2A media. Nephrol Dial Transplant
721		14:2433-2437.
722	54.	Ikner LA, Toomey RS, Ginger N, Neilson JW, Pryor BM, Maier RM. 2007.
723		Culturable microbial diversity and the impact of tourism in Kartchner Caverns,
724		Arizona. Microb Ecol 53:30-42.

725	55.	Iva T, Irina L, Anna T, Margarita K. 2013. Diversity and biosynthetic potential
726		of culturable aerobic heterotrophic bacteria isolated from Magura Cave,
727		Bulgaria. Int J Speleol 42:65-76.
728	56.	Velikonja BH, Tkavc R, Pašić L. 2014. Diversity of cultivable bacteria
729		involved in the formation of macroscopic microbial colonies (cave silver) on
730		the walls of a cave in Slovenia. Int J Speleol 43:45-56.
731	57.	Barton H, Taylor N, Kreate M, Springer A, Oehrle S, Bertog J. 2007. The
732		impact of host rock geochemistry on bacterial community structure in
733		oligotrophic cave environments. Int J Speleol 36:93-104.
734	58.	Groth I, Vettermann R, Schuetze B, Schumann P, Saiz-Jimenez C. 1999.
735		Actinomycetes in karstic caves of northern Spain (Altamira and Tito Bustillo).
736		J Microbiol Methods 36:115-122.
737	59.	Jamil SUU, Zada S, Khan I, Sajjad W, Rafiq M, Shah A, Hasan F. 2016.
738		Biodegradation of polyethylene by bacterial strains isolated from Kashmir
739		cave, Buner, Pakistan. J Caves Karst Stud 79:73-80.
740	60.	Wischer D, Kumaresan D, Johnston A, El Khawand M, Stephenson J,
741		Hillebrand-Voiculescu AM, Chen Y, Colin Murrell J. 2015. Bacterial
742		metabolism of methylated amines and identification of novel methylotrophs in
743		Movile Cave. ISME J 9:195-206.
744	61.	Desai MS, Assig K, Dattagupta S. 2013. Nitrogen fixation in distinct microbial
745		niches within a chemoautotrophy-driven cave ecosystem. ISME J
746		7:2411-2423.

747	62.	Yang Y, Zhang R, Feng J, Wang C, Chen J. 2019. Azospirillum griseum sp.
748		nov., isolated from lakewater. Int J Syst Evol Microbiol 69:3676-3681.
749	63.	Harwood CS, Parales RE. 1996. The beta-ketoadipate pathway and the
750		biology of self-identity. Ann Rev Microbiol 50:553-590.
751	64.	China TsfaotPsRo. Natural conditions of Kuankuoshui nature reserve of China.
752		2014-04-03.
753	65.	Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L. 2017. Culturable mycobiota
754		from karst caves in China, with descriptions of 20 new species. Persoonia
755		39:1-31.
756	66.	Ruibal C, Platas G, Bills GF. 2005. Isolation and characterization of melanized
757		fungi from limestone formations in Mallorca. Mycol Prog 4:23-38.
758	67.	Reasoner DJ, Geldreich EE. 1985. A new medium for the enumeration and
759		subculture of bacteria from potable water. Appl Environ Microbiol 49:1-7.
760	68.	Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
761		Madden TL. 2009. BLAST+: architecture and applications. BMC
762		Bioinformatics 10:421.
763	69.	Yoon S-H, Ha S-m, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of
764		algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek
765		110:1281-1286.
766	70.	Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome
767		sequence-based species delimitation with confidence intervals and improved
768		distance functions. BMC Bioinformatics 14:60.

-	769	71.	Hammer Ø, Harper D, Ryan P. 2001. PAST: paleontological statistics software
-	770		package for education and data analysis. Palaeontologia Electronica 4:1-9.
-	771	72.	Wickham H. 2009. Ggplot2: elegant graphics for data analysis. Springer. New
-	772		York.
-	773	73.	Chen H, Boutros PC. 2011. VennDiagram: a package for the generation of
-	774		highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics
-	775		12:35.
-	776	74.	Kimura M. 1980. A simple method for estimating evolutionary rates of base
-	777		substitutions through comparative studies of nucleotide sequences. J Mol Evol
-	778		16:111-120.
-	779	75.	Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary
-	780		genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870-1874.
-	781	76.	Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. 2006.
-	782		Toward automatic reconstruction of a highly resolved tree of life. Science
-	783		311:1283.
-	784	77.	Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A,
-	785		Copeland A, Huddleston J, Eichler EE. 2013. Nonhybrid, finished microbial
-	786		genome assemblies from long-read SMRT sequencing data. Nat Methods
-	787		10:563.
-	788	78.	Lam KK, LaButti K, Khalak A, Tse D. 2015. FinisherSC: a repeat-aware tool
-	789		for upgrading de novo assembly using long reads. Bioinformatics
-	790		31:3207-3209.

AEM

Applied and Environmental Microbiology 791

79.

792		L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic
793		genome annotation pipeline. Nucleic Acids Res 44:6614-6624.
794	80.	Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an
795		automatic genome annotation and pathway reconstruction server. Nucleic
796		Acids Res 35:W182-185.
797	81.	Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering
798		C, Bork P. 2017. Fast genome-wide functional annotation through orthology
799		assignment by eggNOG-mapper. Mol Biol Evol 34:2115-2122.
800	82.	Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015.
801		BUSCO: assessing genome assembly and annotation completeness with
802		single-copy orthologs. Bioinformatics 31:3210-3212.
803	83.	Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing
804		large sets of protein or nucleotide sequences. Bioinformatics 22:1658-1659.
805	84.	Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a
806		versatile open source tool for metagenomics. PeerJ 4:e2584.
807	85.	Edgar RC. 2010. Search and clustering orders of magnitude faster than
808		BLAST. Bioinformatics 26:2460-1.
809	86.	Edgar RC. 2016. UNOISE2: improved error-correction for Illumina 16S and
810		ITS amplicon sequencing. bioRxiv doi:10.1101/081257:081257.
811	87.	Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello
812		EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST,

Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky

813		Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD,
814		Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J,
815		Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of
816		high-throughput community sequencing data. Nat Methods 7:335-6.
817	88.	Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast
818		single-node solution for large and complex metagenomics assembly via
819		succinct de Bruijn graph. Bioinformatics 31:1674-1676.
820	89.	Seemann T. 2014. Prokka: rapid prokaryotic genome annotation.
821		Bioinformatics 30:2068-9.
822	90.	Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European molecular
823		biology open software suite. Trends Genet 16:276-277.
824	91.	Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon
825		provides fast and bias-aware quantification of transcript expression. Nat
826		Methods 14:417-419.
827	92.	MacLean AA, MacPherson G, Aneja P, Finan TM. 2006. Characterization of
828		the beta-ketoadipate pathway in Sinorhizobium meliloti. Appl Environ
829		Microbiol 72:5403-5413.
830	93.	Kaschabek SR, Kuhn B, Müller D, Schmidt E, Reineke W. 2002. Degradation
831		of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification
832		and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase
833		and 3-oxoadipyl-CoA thiolase. J Bacteriol 184:207.

76	e	s		1
y	1	r	ıc	1
.,	V	e	r	'n
.,				
	V	e	r	'n
.1	v	e	r'	'n
.,	v	e	r' r' m	'n
 v	v v	e n	r r m c	'n 'n
.' v	v v v	e n n e	r' r' m	'n 'n
 		e n h e		'n 'n
JI JI JI JI JI JI JI JI JI JI JI JI JI J				'n 'n 'n 'n 'n
v o v o v o d d		e n h n e		'n 'n ', a 'n en
יי. עע מומ ל d		e u h n e		'n 'n 'n 'n 'n 'n
יי. מוס ל ל גיי.יי		e n n e e e		'n 'n 'n 'n 'n 'n 'n

834	Table	1 New	bacterial	species	from	karst	caves 1	l and	12	and	their	etymology	and	accession	numbers	in	the	international	culture

835 collections.

Toyonomy	Donk	Etymology	Tuma Designation	CGMCC/KCTC/
Taxonomy	Kalik	Etymology	Type Designation	NBRC Accessions
Azospirillum covernae	en nov	ca var'naa I gan n <i>cavarnaa</i> of a cava	KOWOOR 5T	CGMCC 1.13529 /
A20spiritium cuvernue	sp. 110v.	ca.ver hac. L. gen. h. cuvernue, of a cave	K2 W 22D=5	NBRC 113558
Deinococcus covernous	en nov	ca ver'nus I gan mass n aquamous of a cave	K2805 167 ^T	CGMCC 1.13537 /
Demococcus cuvernous	sp. nov.	ca.vei nus. L. gen. masc. n. cavernous, of a cave	K2505-107	KCTC 43236
Maggilia aguamag	an nov	as ver'nes. I can a sauguras of a seve	V1802 61 ^T	CGMCC 1.13526 /
massina cavernae	sp. nov.	ca.vel fiae. L. gen. fi. cavernae, of a cave	K1502-01	KCTC 82189
Nogardioidas aminatar	en nov	cavum, L. hole; watar, Gk, water, caviwatar,	KIW22B 1T	CGMCC 1.13535 /
wocuruotues cuviwatar	sp. 110v.	from cave water	K1 W22D-1	KCTC 49465
Noviherbaspirillum cavernae	sp. nov.	ca.ver'nae. L. gen. n. cavernae, of a cave	K2R10-39 ^T	CGMCC 1.13602
Noviherbaspirillum rocha	sp. nov.	ro'cha. ML. gen. n. rocha, from rock	K1R23-30 ^T	CGMCC 1.13534
Noviherbaspirillum sedimentum	sp. nov.	sedi'mentum. L. gen. pl. n. sedimentum, from sediment	K1S02-23 ^T	CGMCC 1.13533
01		a contract I am a contract of a serie	VIW22D PT	CGMCC 1.13560 /
Oleomonas cavernae	sp. nov.	ca.ver nae. L. gen. n. <i>cavernae</i> , of a cave	K1 W22D-8	KCTC 82188
Paguing anging anyon as		as ver'nes. I can a sauguras of a seve	Kapaa a ^T	CGMCC 1.13561 /
r denisporosurcina cavernae	sp. nov.	ca.vei nac. L. gen. n. <i>cuvernae</i> , of a cave	K2K25-5	NBRC 113453
Psaudomonas cavarnacola		ca.verne'co.la. L. n. cavernae cave; L. suffcola,	K1802 6 ^T	CGMCC 1.13525 /
1 seudomonus cuvernecolu	sp. nov.	dweller; N.L. n. cavernecola cave-dweller	K1502-0	KCTC 82190
Pseudomonas covernae	sn nov	caver'nge I gen n <i>covernae</i> of a cave	K2W31S-8 ^T	CGMCC 1.13586 /
1 seudomonus cuvernue	sp. 110v.	ca.ver nac. L. gen. n. cavernae, of a cave	K2 W 315-0	KCTC 82191
Sphingomonas cavernae	sp. nov.	ca.ver'nae. L. gen. n. cavernae, of a cave	K2R01-6 ^T	CGMCC 1.13538 /

39

Downloaded from
http://a
em.asm.org/
on Ja
anuary
28,
2021
at -
Tongj
=:

KCTC 82187

Table 2 General features of the newly cultivated and novel bacterial genomes							
Organism	GenBank accession	Contigs	Size (Mb)	Genes	Proteins	G+C%	Completeness
	number						
Azospirillum cavernae strain K2W22B-5 ^T	GCA_003590795.1	9	6.461	5850	5595	66.0%	94.2%
Deinococcus cavernous strain K2S05-167 ^T	GCA_003590815.1	32	4.566	4571	4192	64.0%	77.7%
Massilia cavernae strain $K1S02-61^{T}$	GCA_003590855.1	201	5.439	5022	4473	63.6%	87.3%
Nocardioides caviwatar strain $K1W22B-1^{T}$	GCA_003600895.1	2	3.467	3334	3236	69.4%	94.3%
Noviherbaspirillum cavernae strain K2R10-39 ^T	GCA_003590875.1	4	4.665	4376	4207	59.9%	98.3%
Noviherbaspirillum rocha strain K1R23-30 ^T	GCA_003591035.1	3	6.495	5936	5725	57.5%	98.9%
Noviherbaspirillum sedimentum strain K1S02-23 ^T	GCA_003590835.1	4	5.038	4666	4484	59.4%	98.8%
Oleomonas cavernae strain $K1W22B-8^{T}$	GCA_003590945.1	29	5.643	5559	5077	66.7%	83.8%
Paenisporosarcina cavernae strain $K2R23-3^{T}$	GCA_003595195.1	1	2.537	2658	2507	39.8%	95.6%
Pseudomonas cavernecola strain K1S02-6 ^T	GCA_003596405.1	8	5.626	5241	4830	60.6%	98.7%
Pseudomonas cavernae strain K2W31S-8 ^T	GCA_003595175.1	1	4.950	4514	4308	64.5%	98.9%
Sphingomonas cavernae strain K2R01-6 ^T	GCA_003590775.1	5	4.244	4033	3878	63.9%	91.0%
Crenobacter cavernae strain K1W11S-77 ^T	GCA_003355495.1	1	3.271	3167	2980	65.3%	96.9%

Accepted Manuscript Posted Online

Solimonas fluminis strain K1W22	2B-7 GCA_003428335.1 1	5.373 4807 4699 67.1% 92.0%					
Table 3 Bacterial strains, plasmids, and primers used in this study							
Strain/Plasmid/Primer	Description	Source/Sequences					
Strains							
Azospirillum K2W22B-5 ^T	4HB degrading strain	This study					
Noviherbaspirillum $K1R23-30^{T}$	4HB degrading strain	This study					
E. coli BL21 (DE3)	Protein expression host	TransGen					
Plasmids							
pET-28a (+)	Gene expression vector	Novagen					
pET-28a-k5pcaIJ	pET-28a (+) carrying <i>pcaI</i> and <i>pcaJ</i> of	This study					
	strain K2W22B-5 ^T						
pET-28a-30pcaIJ	pET-28a (+) carrying <i>pcaI</i> and <i>pcaJ</i> of	This study					
	strain K1R23-30 ^T						
Primers							
k5pcaIJ-F	For PCR of <i>pcaI</i> and <i>pcaJ</i> of K2W22B-5 ^T	GACGCATATGGCGCTCATCACACCC					
k5pcaIJ-R	For PCR of <i>pcal</i> and <i>pcaJ</i> of K2W22B-5 ^T	CCCAAGCTTACCCTCCGAACTGGTGCT					
30pcaIJ-F	For PCR of <i>pcal</i> and <i>pcaJ</i> of $K1R23-30^{T}$	GCGGCATATGATCAATAAAATTTGCACTTCC					
30pcaIJ-R	For PCR of <i>pcaI</i> and <i>pcaJ</i> of K1R23- 30^{T}	ATCCAAGCTTATTGGGGGATATACGTCAGCG					

AEM

838

42

839 Figure legends

840	Figure 1 Workflow of the isolation procedure and the diversity of the cultured cave
841	bacteria. The boxplots in panels (b) and (c) show the Shannon indices of the cultivated
842	bacterial strains from the two caves and the three cave niches (rock, sediment, and water).
843	The pie charts in panels (b) and (c) show the taxonomy distribution of the cave isolates
844	from the two caves and the three cave niches. The PCoA plot in panel (b) shows the
845	β -diversity of the cultured cave bacteria based on the Bray-Curtis dissimilarity. The Venn
846	diagram in panel (b) shows the intersection of the cave isolates from the cave niches at
847	the species level.
848	Figure 2 Taxonomic distribution of the cultured cave bacteria collection and its
849	representativeness in 16S rRNA gene amplicon datasets. Panel (a) shows the taxonomic
850	distributions at the phylum and genus levels. Proteo Proteobacteria; Actino
851	Actinobacteria; and Firmi Firmicutes; The boxplots in panel (b) show the percentage of
852	the sequences in the amplicon datasets that are represented by the cultured isolates, and
853	the triangles in each boxplot indicated the mean representativeness of each dataset.
854	Figure 3 Morphologies and phylogenetic affiliations of the new species isolated from the
855	cave samples. The morphology in panel (a) is from transmission electron microscopy.
856	The phylogenetic tree in panel (b) was constructed based on the 16S rRNA genes using
857	the neighbor-joining algorithm.
858	Figure 4 Metabolic overview of the newly isolated bacterial species from the caves.
859	Panel (a) shows the assimilation of the carbon sources according to the Biolog® GENIII

Applied and Environmental Microbiology

860	system; purple indicates positive and white indicates negative. Panel (b) shows the
861	distributions of the COGs in the 14 newly sequenced genomes, the COGs are color-coded,
862	with the highest number of genes shown in pink, and the genes with the lowest number
863	shown in green.
864	Figure 5 Overview of the metabolisms of (a, c, e) the cave cultured genome collection
865	and (b, d, f) the public cave metagenome data and their relationships to the C/N/S cycles.
866	The numbers and percentages on the arrows in panels (a), (c), and (e) represent the
867	number of species that are able to perform the conversion and their relative abundances;
868	the width of the arrow is in proportion to the number of species that are able to perform
869	the transformation. The color ranges in panels (b), (d), and (f) indicate the TPM value
870	(transcripts per million) of each KO in the metagenome data (accession numbers are
871	shown as x-axis labels).
872	Figure 6 (a) Representative genetic cluster and (b) β -ketoadipate pathway, and (c) the
873	two 3-oxoadipate-CoA-transferase gene clusters and (d) their enzymatic activity in the
874	pathway. The red percentages in panel (a) indicate the amino acid similarities between the
875	cave isolates and strain ATCC35469. The controls in panel (d) summarize three
876	conditions: the assay mixture without enzyme, or with K5PcaIJ but without succinyl-CoA,
877	or with 30PcaIJ but without succinyl-CoA.
070	

879 Supplementary information

- 880 Table S1 Distribution of the novel taxa in the two caves and among the three substrates
- **Table S2** Carbon and nitrogen metabolism related genes in strains K1W22B-8^T and
- 882 K2W22B-5^T
- 883 Table S3 Blast results for the annotated PcaIJ in the metagenomic data versus the
- 884 cultured bacterial genomes
- **Figure S1** Phylogenetic trees based on the 16S rRNA genes of the cave bacterial isolates.
- 886 Figure S2 Organizations of the carbon and nitrogen cycling related genes in strains
- 887 K2W22B- 5^{T} and K1W22B- 8^{T} .
- **Figure S3** Growth of strain K2W22B- 5^{T} with 4HB as the sole carbon source.
- 889 Dataset S1 16S rRNA gene sequences and alignment results for the isolated cave bacteria
- 890 Dataset S2 Statistics for the isolated cave bacteria species
- 891 Dataset S3 Description of the new bacterial species from the karst caves
- 892 Dataset S4 Accession and completeness of the cultured cave bacterial genomes
- 893 Dataset S5 Annotation of the non-redundant cave gene catalog (using the KEGG
- 894 database)
- 895 Dataset S6 Check list of the C/N/S metabolism related genes in the cave bacterial
- 896 genomes
- 897 Dataset S7 Metadata of the culture-independent data used in this study
- 898 Dataset S8 Accession numbers of the representative bacterial strains obtained in this
- 899 study

Applied and Environmental

Microbiology

Applied and Environmental

Microbiology

- P: Inorganic ion transport and metabolism
- I: Lipid transport and metabolism
- Q: Secondary metabolites biosynthesis, transport and catabolism
- H: Coenzyme transport and metabolism
- G: Carbohydrate transport and metabolism
- F: Nucleotide transport and metabolism

Poorly characterized

S: Function unknown

(a)

(b)

Poly-_β-hydroxy-

butyrate

3-Oxoadipyl-CoA

59(33.3%)

56

2500

2000

1500

1000

500

0

K00632

K03518

K03519

K03520

80

194

(35.8%)

(c)

NO

23

165

11

(6.0%)

(6.5%)

N₂O

6 (4.6%)

AEM

ERR1514433

SRR9599867

SRR11676647 SRR11676930

SRR11678124

SRR12350322

ERR1514431 ERR1514432 Applied and Environmental

