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Abstract: To study the spatial distribution characteristics of soil organic carbon (SOC) coupled
with rocky desertification, 1212 soil samples from 152 soil profiles were sampled from different
karst landforms, including karst low hills/virgin forest (KLH) in Libo County, a karst peak-cluster
depression (KPCD) in Xingyi County, a karst canyon (KC) in Guanling County, a karst plateau basin
(KPB) in Puding County and a karst trough valley (KTV) in Yinjiang County. The spatial distribution
characteristics of the responses of SOC, SOC density (SOCD), rocky desertification and soil bulk
density (SBD) to different influencing factors were analyzed. The relationships among SOC, SOCD,
rocky desertification and SBD were analyzed using Pearson correlation analysis. The SOC storage
capacity was characterized by using SOCD, and then the SOC storage capacity in different evolution
stages of karst landforms was assessed. The SOC contents of KLH, KPCD, KC, KPB and KTV ranged
from 6.16 to 38.20 g·kg−1, 7.42 to 27.08 g·kg−1, 6.28 to 35.17 g·kg−1, 4.62 to 23.79 g·kg−1 and 5.24
to 37.85 g·kg−1, respectively, and their average SOCD values (0–100 cm) were 7.37, 10.79, 7.06, 8.51
and 7.84 kg·m−2, respectively. The karst landforms as ordered by SOC storage capacity were KPCD
> KPB > KLH > KTV > KC. The SOC content was negatively correlated with the SBD; light rocky
desertification may lead to SOC accumulation. The rocky desertification degree and SBD were closely
associated with slope position and gradient. Rocky desertification first increased, then decreased
from mountain foot to summit, and increased with increasing slope gradient. However, the SBD
decreased from mountain foot to summit and with increasing slope gradient. The SOC contents
on the northern aspect of the mountains were generally higher than the other aspects. In summary,
rock outcrops controlled the SOC contents in the studied regions. The slope position, gradient and
aspect influenced the composition and distribution of vegetation, which influenced the evolution of
rocky desertification. Therefore, these factors indirectly affected the SOC content. Additionally, the
SOCD decreased with increasing rocky desertification. During the different evolution stages of karst
landforms, the SOC storage capacity first decreases, then increases.

Keywords: soil organic carbon; rocky desertification process; vegetation; spatial heterogeneity;
response mechanism; different karst landforms

1. Introduction

Soil is an open system of matter and energy in nature, and accumulates matter and
energy for conversion into other forms. Soil is a key component of the Earth system
controlling processes involved in mass flow, energy flow and biogeochemical cycles [1,2].
Soil is a loose layer covering the Earth’s land surface in which plants grow, and is an
important reservoir of soil organic carbon (SOC) [3,4]. SOC is an important basis for
soil fertility, and plays a key role in improving soil quality and promoting agricultural
output [5]. Soil ecosystems provide nutrients for plant growth, support biological processes
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and impact the composition of the atmosphere, e.g., they adjust the balance of moisture,
heat and carbon dioxide. Therefore, soil quality is key to the sustainable development of
ecological environments [6,7]. Previous studies have shown that the global SOC reserve
in the 0–100 cm soil layer is approximately 1460 Pg, which is three times and two times
greater than the SOC reserve in vegetation and the atmosphere, respectively [8–10]. The
SOC reservoir is a key part of the terrestrial carbon pool, and a small change in SOC may
lead to a huge change in atmospheric CO2 concentration, which is associated with global
warming [11]. The SOC reservoir has a direct impact on terrestrial SOC storage, which
influences the global carbon balance [12–14]. The SOC is not permanently fixed in soils, and
is a dynamic process of outputs and inputs [15,16]. Karst landforms are unique ecosystems
that differ from non-karst areas and are characterized by low stability, poor self-regulation
and low environmental capacity. The spatial distribution of SOC in karst areas is highly
heterogeneous [17,18]. The spatial heterogeneity of SOC and the ecological environment
in karst areas is much greater than in non-karst areas [19]. The problem of global carbon
loss remains unresolved, and many scholars are focusing on SOC in karst regions for
answers [20,21]. Research on SOC in karst areas has become a hot topic worldwide.

The ecological environment in karst areas is complex. Many factors influence the
spatial distribution and storage of SOC in karst areas, including lithology, slope gradient,
slope aspect, slope position, rock exposure and vegetation [13,22]. The slope gradient has
a significant effect on changes in SOC content in the topsoil layer (0–20 cm) [23]. Zhang
et al. found that slope gradient and slope aspect were important factors in afforestation
that drove soil carbon sequestration and reduced soil erosion [24]. Liu et al. reported that
land use played a key role in affecting variations in SOC in dry valleys in southwestern
China [25]. Zhang et al. found that paddy fields improved SOC accumulation in karst
basins [14]. The reclamation of farmland as forest is a key measure in the remediation of
karst rocky desertification in Southwest China; it changes the local land use, which affects
the local SOC spatial distribution and storage [19]. Many scholars have investigated the
spatial distribution characteristics and reserves of SOC in karst areas in southern China. For
example, Zhang et al. investigated the SOC in the Houzhai karst basin of Guizhou Province
from 1980–2015; their results showed that the SOC density in the topsoil layer of 0–20 cm
increased from 4.91 to 5.13 kg·m−2, the SOC content was between 21.91 and 25.07 g·kg−1,
and the SOC storage was between 368.27 × 103 and 385.09 × 103 t [14,22]. These results
were similar to Huang et al., who stated that the average SOC content, density and total
storage at a soil depth of 20 cm in a small karst watershed were 25.07 g·kg−1, 4.27 kg·m−2

and 2.65× 108 kg, respectively [19,26]. The SOC storage in the 0–20 cm soil layer accounted
for 49.2% of the SOC storage in the 0–100 cm soil layer (5.39 × 108 kg) [13,26]. Huang
et al. predicted that SOC storage in the 0–20 cm and 0–100 cm soil layers would increase to
3.37 × 1013 g and 6.29 × 1013 g by 2050 with the implementation of a rocky desertification
control project (returning farmland to forests and grass) in Guizhou Province [19]. In
general, the SOC gradually decreased with increasing soil depth in the 0–100 cm soil layer.
Humans can easily disturb the SOC in the upper 0–50 cm soil layer, and changes to the
SOC fit a linear model. However, little difference was found in SOC in the 50–100 cm
subsoil layer [20]. There were some discrepancies in SOC content and storage among the
different karst landforms. Wang et al. found that the SOC content in the 0–20 cm soil layer
ranged from 20.29 to 31.02 g·kg−1 in different karst landforms, which is a highly variable
level [15]. In profile of 100 cm, the SOC densities (SOCD) in a karst basin, a karst trough
valley and a karst area in southwestern China were 8.7 kg·m−2 [26], 10.6 kg·m−2 [27] and
5.62 kg·m−2 [28], respectively. Wang et al. showed that the SOCD in the 0–40 cm soil depth
was between 1.08 and 7.32 kg·m−2 under different rocky desertification degrees, with the
magnitude of this range reaching 6.24 kg·m−2 [21].

Many scholars have examined the spatial distribution characteristics of the content,
density, and storage of SOC and the controlling factors in karst areas. However, there are
few reports on the SOC response to different factors coupled with rocky desertification
stages on different karst landforms. Therefore, the present study investigated the SOC
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spatial distribution response to different factors (e.g., slope gradient, slope aspect, slope
position, vegetation, lithology and climate) with rocky desertification characteristics. The
results improve our understanding of the regularity of the spatial distribution and storage
capacity of SOC in karst rocky desertification areas, and provide a reference for carbon sink
management and environmental protection in these areas.

2. Materials and Methods
2.1. Study Region

The study areas were locations in Guizhou Province in Southwest China with the
geographic coordinates 103◦36′–109◦35′ E and 24◦37′–29◦13′ N, including Libo County,
Xingyi County, Guanling County, Puding County and Yinjiang County. The research region
is located in the slope belt of the transition zone between the Sichuan Basin (Sichuan
Province), the Yun-Gui Plateau (Yunnan Province and Guizhou Province) and the Hunan
Hills (Hunan Province). The elevation in the region ranges from 147.7 m to 2900.6 m, and
the area features high mountains, deep valleys and steep slopes. The terrain in the western
part is higher in elevation than the eastern part, and the main landform types include karst
plateaus, karst mountains, karst hills and karst basins. Mountains and hills account for
92.5% of the total area. The karst area accounts for 61.56% of the terrestrial area, and the
rocky desertification area accounts for 34.59%. This area is in the subtropical region, features
a humid monsoon climate, and is affected by the quasi-stationary Guiyang–Kunming front.
The average annual temperature is between 13 ◦C and 16 ◦C, and the average annual
rainfall is between 1150 mm and 1250 mm. The rainy season and the warm season coincide,
which may promote further rocky desertification. Based on the findings of the survey and
statistical analysis, tree species primarily include Juglans regia L., Cyclobalanopsis glauca
(Thunb.) Oerst. and Pinus massoniana Lamb., shrub species primarily include Rose roxburghii
and Pyracantha fortuneana (Maxim.) Li, and grass species primarily include Setaria viridis
(L.) Beauv. and Eleusine indica (L.) Gaertn.

2.2. Research Design

To research the spatial distribution characteristics of the responses of SOC content and
storage capacity to the different geographical factors associated with rocky desertification
processes on different karst landforms, soil samples were taken from a virgin forest region
in Libo, a peak cluster depression in Xingyi, a canyon in Guanling, a basin in Puding and a
trough valley in Yinjiang. These regions represent karst low hills (KLH), karst peak-cluster
depression (KPCD), karst canyon (KC), karst plateau basin (KPB) and karst trough valley
(KTV), respectively. The slope position of the mountain was divided into four parts: flat
ground (zone I), lower part of the mountain (zone II), middle part of the mountain (zone
III) and upper part of the mountain (zone IV). The slope gradient was classified as A type
(slope < 20◦), B type (20 ≤ slope < 40◦), C type (40 ≤ slope < 60◦) and D type (slope ≥ 60◦).
The sampling points were set on the mountain surface from the mountain bottom to the
mountain top. Each sampling profile was dug to a depth of 100 cm where possible, and the
soil profile was divided into twelve layers: 0–5 cm, 5–10 cm, 10–15 cm, 15–20 cm, 20–30 cm,
30–40 cm, 40–50 cm, 50–60 cm, 60–70 cm, 70–80 cm, 80–90 cm and 90–100 cm.

According to the model of exchanging space for time, the rocky desertification degree
was divided into five levels by determining the percentage of rock outcrops [16,21,29]. This
classification reflects the dynamic characteristics of the karst rocky desertification process.
Higher percentages of rock outcrops indicate more severe rocky desertification (Table 1).

The process of karst landform evolution is divided into four main stages: infancy
(stage I), youth (stage II), middle age (stage III) and older (stage IV). The main karst features
in stage I include stone teeth, lapie and dolines. The main karst features in stage II include
blind valleys, dry valleys, shafts and reculee. The main karst features in stage III include
peak forests, peak clusters and karst depressions. The main karst features in stage IV
include karst plains, karst hills and solitary peaks. The KPB and KTV belonged to stage I in
the present study, KC belonged to stage II, KPCD belonged to stage III, and KLH belonged
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to stage IV. During the evolution process, the rocky desertification degree increased quickly
from stage I to stage II, decreased sharply from stage II to stage III, and finally increased
slowly from stage III to stage IV.

Table 1. Rocky desertification classes in karst areas.

Class

1 2 3 4 5

Percentage of rock outcrops (%) 0 ≤ X < 20 20 ≤ X < 40 40 ≤ X < 60 60 ≤ X < 80 80 ≤ X ≤ 100
Type of ground material

composition Soil Soil-based Soil and stone Stone-based Stone

Rocky desertification degree Low Low to moderate Moderate Medium to high High

2.3. Soil Sampling and Field Investigation

The sampling sites were set by a random method according to the statistical theory
proposed by Fisher in 1956 [30]. This is a simple, convenient and highly feasible method.
In the sampling process, the random samples can reflect the general conditions of study
area at a high level, and the chance of any sampling point being sampled is equal [31,32].
The random sampling method is appropriate for use in karst areas because of the high
heterogeneity of the environmental characteristics.

Soil thickness was less than 100 cm at many sampling points in the field, which resulted
in the actual sample number being smaller than the planned sample number. A total of
1212 soil samples were collected from 152 points in the studied regions. Among these soil
samples, 155 soil samples were collected from 25 soil profiles in KLH, 227 soil samples
were collected from 22 soil profiles in KPCD, 167 soil samples were collected from 25 soil
profiles in KC, 479 soil samples were collected from 53 soil profiles in KPB, and 184 soil
samples were collected from 27 soil profiles in KTV. Other information, such as the slope
position, slope gradient, slope aspect, vegetation, soil bulk density (SBD), rock outcrops,
and lithology was recorded simultaneously for each of the sampling points. The SBD was
tested using the cutting ring method [22]. The rock outcrops around the soil sampling
points were evaluated using the line-transect method with a line 10 m in length [15,20]. Soil
samples were stored in sealed plastic bags and numbered; the weight of each soil sample
was approximately 1 kg. All soil sample bags were taken back to the laboratory, air-dried,
ground, weighed, sieved to remove the gravel fraction (>2 mm), and prepared as required
for laboratory analysis [18,33]. Rainfall information for the different counties was obtained
from the Resource and Environment Science and Data Center of the Chinese Academy of
Sciences.

2.4. SOC Determination and Statistical Analysis
2.4.1. The Calculation of SBD and SOC

The SBD was calculated using the following formula [15]:

SBD =
M2 −M1

V
(1)

where M1 is the weight of the cutting ring (g), M2 is the weight of the cutting ring with dry
soil (g), and V is the volume of the cutting ring (cm3)

The SOCD was calculated based on the SOC content using the following formu-
las [34–36]:

SOCD =
n+1

∑
m=1

SOCm × SBDm ×Hm × (1 − θm)×(1 −Ar)

1−Mm
(2)

where n is the number of soil samples collected from the sampling site, SOCm is the SOC
concentration of the m layer (g·kg−1), SBDm is the soil bulk density (g·cm−3) of the m layer,



Forests 2022, 13, 28 5 of 21

Hm is the soil thickness (cm), θm is the gravel fraction size larger than 2 mm (%) of the m
layer, Ar is the rock exposure around the sample site (%), and Mm is the moisture in the
tested soil samples (%). Meanwhile, θm and Ar, equal or greater than 0, and lower than 1.

2.4.2. Analysis Methods

The total concentration of SOC was determined using the potassium dichromate
method with K2Cr2O7 oxidation at 170–180 ◦C followed by titration with Fe3O4 [37–40].
Data management and statistical analyses were performed using Microsoft Excel 2003,
R 2.9.2, IBM SPSS Statistics 22 for Windows and Origin 8.6. The relationships among
rocky desertification, SBD, SOC content and different environmental factors (slope position,
gradient, aspect, vegetation and soil lithology) were analyzed using redundancy analysis
(RDA) and Pearson correlation analysis. RDA is an important method of constrained
ordination, and may be used to analyze environmental factors in response to the structure
of species and to reflect the correlations among samples, species and environmental factors.
The different impact factors were sorted with the gradient boosting decision tree (GBDT)
model according to their effects on the SOC. The GBDT is a machine learning decision tree
model for various types of data, and has a high accuracy rate.

3. Results
3.1. Soil Properties in Different Karst Landforms

The rocky desertification process was characterized by calculating the percentage of
rock outcrops at the surface. SBD is an important index of soil quality and the degree of
pedogenesis, and these two important factors influence the spatial distribution character-
istics of SOC in karst mountain areas [22,41]. Information on the SBD and rock outcrops
in different karst landforms is presented in Figure 1. The SBD gradually increased with
increasing soil depth in the topsoil layers (0–40 cm). The SBD in the 0–5 cm soil layer
ranged from 1.13 g·cm−3 to 1.19 g·cm−3 in the different karst landforms. The lowest SBD
value was found in KC, and the highest value was found in KPCD. The SBD values in
the 30–40 cm soil layer ranged from 1.32 g·cm−3 to 1.41 g·cm−3, and the lowest value was
observed in the KC. The highest values were found in KLH and KTV. SBD values in the top
several soil layers were generally higher in KPCD and KPB than the other karst landforms.
However, the SBD in the KC was generally lower than the other karst landforms. The
SBD increased slowly in subsoil layers at 40–100 cm, with the exception of KLH, and there
were no obvious differences in SBD in the same soil layer among different karst landforms.
The coefficients of variation of SBD in different karst landforms ranged between 0.07 and
0.23, which indicates low to moderate variation levels. The discrepancy in SBD in the
upper soil layers was generally higher than in the subsoil (Figure 1a). There were some
discrepancies in rock outcrops among different karst landforms, and the rock exposure of
different karst landforms was primarily lower than 20%, except for KC. The percentage of
low-degree rock exposure in different karst landforms was between 16% and 65%, and the
landforms in order of decreasing rock exposure were KPB > KTV > KLH > KPCD > KC.
The low–medium level of rock exposure was between 15% and 34%, and the landforms in
order of decreasing rock exposure were KC > KPCD > KLH > KTV > KPB. Areas with rock
outcrop percentages that ranged from 0–40% in the different karst landforms accounted
for 50% to 85% of the total area, indicating that a low to medium levels of rock outcrop
exposure was the main distribution characteristic. However, rock outcrops were generally
more abundant in the KC than the other karst landforms, and the rocky desertification of
the KC was high (Figure 1b).

3.2. The Statistics of SOC and SOCD in Different Karst Landforms

Statistical information on SOC and SOCD in different karst landforms is listed in
Table 2. The spatial distribution characteristics of SOC in the vertical direction exhibited
a regular pattern in which the SOC decreased with soil depth. This pattern showed that
the SOC quickly decreased in the upper 0–50 cm soil layers, and the reduction rate in the
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50–100 cm subsoil layers was significantly lower than the upper 50–100 cm soil layers. The
average SOC content in the 0–5 cm soil layer was 30.02 g·kg−1, and only 5.72 g·kg−1 in
the bottom soil layer. The discrepancy reached 5.25 times between the surface and bottom
soil layers. The different karst landforms in descending order of the SOC range from the
surface to the bottom soil layer were KTV > KLH > KC > KPCD > KPB, and their respective
ranges were 32.61, 32.13, 28.89, 19.66 and 19.17 g·kg−1. At the 0–30 cm soil depth, the SOC
content in the different karst landforms decreased in the following order: KLH > KTV >
KC > KPCD > KPB. The descending order in the 40–60 cm soil layer was KC > KTV > KLH
> KPCD > KPB. However, there was no distinct regular spatial distribution of SOC among
the different karst landforms in the 60–100 cm subsoil layer.
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Table 2. The spatial distributions of SOC and SOCD in soil profiles on different karst landforms.

Depth (cm) KLH KPCD KC KPB KTV Mean

SOC (g·kg−1)

0–5 38.20 ± 3.12eE 27.08 ± 3.13fB 35.17 ± 3.57gD 23.79 ± 2.39fA 37.85 ± 3.95hED 30.02 ± 2.95gC
5–10 32.39 ± 3.35dC 24.03 ± 2.91eBA 28.47 ± 3.29fCB 21.61 ± 2.57eA 32.08 ± 3.37gC 26.86 ± 2.32fB
10–15 29.77 ± 2.83dD 20.64 ± 2.59 dB 25.19 ± 3.36eC 17.56 ± 2.36dA 28.34 ± 2.62fD 23.12 ± 2.63eCB
15–20 27.79 ± 2.66dE 17.86 ± 2.12cB 22.91 ± 2.63edDC 14.47 ± 2.53cA 24.87 ± 2.75eD 20.29 ± 2.75dC
20–30 20.58 ± 2.57cC 14.36 ± 2.05cbBA 19.77 ± 2.15dC 12.31 ± 2.12cbA 20.52 ± 2.38dC 16.32 ± 2.16cB
30–40 13.98 ± 1.59bB 10.63 ± 2.23bA 14.78 ± 2.07cB 10.07 ± 2.08bA 14.16 ± 2.14cB 11.79 ± 1.97bA
40–50 10.97 ± 1.67baCB 9.78 ± 1.69baB 11.48 ± 2.12cbC 7.76 ± 1.39baA 11.47 ± 1.56bC 9.39 ± 1.65baB
50–60 9.62 ± 1.82baC 8.31 ± 1.57baB 10.74 ± 1.99bC 6.16 ± 1.67aA 8.66 ± 1.69baB 7.99 ± 1.44baB
60–70 7.69 ± 1.53aB 7.68 ± 1.39baB 9.63 ± 2.31baC 5.79 ± 1.69aA 6.92 ± 1.33aB 7.05 ± 1.41baB
70–80 7.56 ± 1.39aC 7.22 ± 1.67aC 9.35 ± 2.12baD 5.45 ± 1.35aA 5.29 ± 1.25aA 6.50 ± 1.37aB
80–90 7.05 ± 1.30aC 7.08 ± 1.66aC 7.82 ± 1.98aD 5.10 ± 1.52aA 5.07 ± 1.30aA 6.17 ± 1.52aB
90–100 6.16 ± 1.35aB 6.43 ± 1.35aB 6.28 ± 1.34aB 4.62 ± 1.28aA 4.64 ± 1.07aA 5.72 ± 1.29aBA

SOCD (kg·m−2)
0–10 2.51 ± 0.63aA 2.39 ± 0.61aA 2.04 ± 0.68aA 2.18 ± 0.51aA 2.79 ± 0.62aA 2.35 ± 0.65aA
0–20 4.56 ± 0.93bB 4.35 ± 0.69bBA 3.62 ± 0.94baA 3.85 ± 0.75bA 4.86 ± 0.78bB 4.19 ± 0.82bBA
0–30 5.70 ± 1.12cbBA 5.72 ± 1.23cbBA 4.86 ± 1.13bA 5.11 ± 0.98cA 6.2 ± 1.39cbB 5.45 ± 1.15cbBA
0–40 6.30 ± 1.05cBA 6.76 ± 1.12cB 5.66 ± 1.01cbA 6.13 ± 1.30dcBA 6.73 ± 1.67cB 6.28 ± 1.21cBA
0–50 6.73 ± 1.37dcBA 7.60 ±1.37dc B 6.11 ± 1.25cA 6.79 ± 1.65dBA 7.12 ± 1.25dcBA 6.85 ± 1.39cBA
0–60 6.97 ± 1.69dcBA 8.31 ± 1.39dC 6.48 ± 1.68cA 7.23 ± 2.32dB 7.32 ± 2.12dcB 7.24 ± 1.95dcB
0–70 7.14 ± 2.12dBA 8.97 ± 1.25dC 6.67 ± 2.01cA 7.61 ± 2.07edB 7.47 ± 2.01dB 7.56 ± 2.08dcB
0–80 7.22 ± 1.98dBA 9.58 ± 2.33edC 6.83 ± 2.32cA 7.95 ± 1.95eB 7.60 ±2.33dB 7.83 ± 2.12dB
0–90 7.31 ± 2.03dA 10.21 ± 2.59eC 6.94 ± 2.17dcA 8.25 ± 2.32eB 7.73 ± 1.95dA 8.09 ± 2.31dB

0–100 7.37 ± 2.37dA 10.79 ± 2.91eC 7.06 ± 2.63dA 8.51 ± 2.56eB 7.84 ± 2.30dBA 8.31 ± 2.44dB

Notes: Within columns, values followed by the same lowercase letter (a–g) are not significantly different (p < 0.05);
within rows, values followed by the same capital letter (A–E) are not significantly different (p < 0.05).

The SOCD accumulation value increased with soil thickness, while the average growth
rate decreased with soil depth. The increased range of SOCD was significant in each soil
layer from the surface to a 40-cm soil depth, and was small in subsoil layers of 50–100 cm
for all studied karst landforms. The SOCD range in the 0–10 cm soil layer in the different
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karst landforms was only 0.72 kg·cm−2. However, this range reached 3.73 kg·cm−2 in the
90–100 cm soil layer. From the 0–10 cm soil depth to the 0–100 cm soil depth, the greatest
increase in SOCD was observed in KPCD, and the smallest increase was found in KLH.
The descending order of the other karst landforms was KPB > KTV > KC.

3.3. The Spatial Distribution Characteristics of Rocky Desertification

The rocky desertification degree was characterized by calculating the rock outcrop
percentage. Higher rock outcrop percentages indicate a higher rocky desertification degree.
The relationships between rocky desertification and different impact factors including
slope position, gradient, aspect, vegetation, and lithology were analyzed. The average rock
outcrop percentages in zones I, II, III and IV were 8%, 24%, 29% and 15%, respectively,
which indicates that the rocky desertification degree first increased, then decreased slightly.
The degree of rocky desertification in zones I and II was lower than in zones III and IV.
Zone I primarily included flat ground and depressions in which the soil was generally thick.
Zone II was located primarily in the mountain foothills, and these regions were generally
covered with lush vegetation, especially trees and shrubs. The rocky desertification of zone
III was the worst among all of the zones. Vegetation was sparse and less diverse in this
zone of mountains. The slope gradient, which is closely associated with soil erosion, was
greater in this region than in the other zones. Notably, the rocky desertification of zone IV
was slightly lower than zone III. The following reasons may contribute to this phenomenon:
(a) the effects of human disturbance in the upper part of the mountains were weaker; (b) the
mountain tops in this area were flatter than in zone III; and (c) this area of the mountains is
generally covered with vigorous vegetation, primarily shrubs and grass (Figure 2a).

Forests 2022, 13, x FOR PEER REVIEW 8 of 23 

 

 

kg·cm−2 in the 90–100 cm soil layer. From the 0–10 cm soil depth to the 0–100 cm soil depth, 
the greatest increase in SOCD was observed in KPCD, and the smallest increase was found 
in KLH. The descending order of the other karst landforms was KPB > KTV > KC. 

3.3. The Spatial Distribution Characteristics of Rocky Desertification 
The rocky desertification degree was characterized by calculating the rock outcrop 

percentage. Higher rock outcrop percentages indicate a higher rocky desertification de-
gree. The relationships between rocky desertification and different impact factors includ-
ing slope position, gradient, aspect, vegetation, and lithology were analyzed. The average 
rock outcrop percentages in zones I, II, III and IV were 8%, 24%, 29% and 15%, respec-
tively, which indicates that the rocky desertification degree first increased, then decreased 
slightly. The degree of rocky desertification in zones I and II was lower than in zones III 
and IV. Zone I primarily included flat ground and depressions in which the soil was gen-
erally thick. Zone II was located primarily in the mountain foothills, and these regions 
were generally covered with lush vegetation, especially trees and shrubs. The rocky des-
ertification of zone III was the worst among all of the zones. Vegetation was sparse and 
less diverse in this zone of mountains. The slope gradient, which is closely associated with 
soil erosion, was greater in this region than in the other zones. Notably, the rocky deserti-
fication of zone IV was slightly lower than zone III. The following reasons may contribute 
to this phenomenon: (a) the effects of human disturbance in the upper part of the moun-
tains were weaker; (b) the mountain tops in this area were flatter than in zone III; and (c) 
this area of the mountains is generally covered with vigorous vegetation, primarily shrubs 
and grass (Figure 2a). 

  

(a) (b) 

  

(c) (d) 

Figure 2. Cont.



Forests 2022, 13, 28 8 of 21
Forests 2022, 13, x FOR PEER REVIEW 9 of 23 

 

 

  

(e) (f) 

Figure 2. Information on rocky desertification: (a–e) show the rock outcrops at different slope posi-
tions, slope gradients, slope aspects, vegetation and lithologies, respectively; (f) shows the relation-
ship between rainfall and rocky desertification. 

There was a distinct discrepancy in rocky desertification at different slope gradient 
levels (Figure 2b). The rock outcrops increased with increasing slope gradient, indicating 
a gradually increase of rocky desertification with slope gradient. The rocky desertification 
related to different slope gradients was divided into three gradient levels. The A type rock 
outcrops were the first level, B and C types belonged to the second level, and D type was 
the third level. For low rocky desertification degrees, the spatial discrepancy was rela-
tively low. Significant discrepancies were found among rock outcrops with different slope 
aspects, and the average rock outcrop ratios of different slope aspects ranged from 0.18 to 
0.35. The different slope aspects in order of decreasing rock outcrop area were south (0.35) 
> southeast (0.31) > east (0.26) = southwest (0.26) > northeast (0.23) = west (0.23) > north-
west (0.21) > north (0.18) (Figure 2c). Rock outcrops gradually increased with the retro-
gressive succession of vegetation; the different vegetation types in decreasing order of 
rock outcrop area were deciduous shrub forest > meadow > evergreen shrub forest > de-
ciduous broadleaved forest > evergreen broadleaved forest > evergreen coniferous forest. 
The rock outcrops under evergreen coniferous forest and evergreen broadleaved forest 
were similar, and their rocky desertification degrees were low. The rocky desertification 
degrees of shrub forest and meadow were greater than the other vegetation types (Figure 
2d). In summary, the variation in rock outcrops under deciduous forest was greater than 
under evergreen forest, the main reason being that the coverage of a deciduous forest 
changes seasonally. 

The lithological properties of the underlying geological layers (strata) are the basis of 
soil formation, and are an important factor in rocky desertification occurrence. The main 
components of carbonate in karst areas include limestone and dolomite. Carbonate rock 
is easily eroded, especially under acidic conditions, which worsens soil erosion. The rock 
outcrop percentages in areas underlain by limestone were higher than areas underlain by 
dolomite under the same vegetation type. For limestone bedrock, the vegetation types in 
order of by rocky desertification degree were shrub forest > grass > tree forest, and the 
order for dolomite bedrock was grass > shrub forest > tree forest (Figure 2e). Climate 
change, especially changes in rainfall, can influence the processes involved in rocky des-
ertification. In order of decreasing average annual rainfall, the landforms in the study re-
gions were KPB > KPCD> KLH > KC > KTV, and in order of rocky desertification degree 
the landforms were KC > KPB > KPCD > KTV > KLH (Figure 2f). The distribution charac-
teristics of rainfall and rocky desertification were consistent to a certain extent. Vegetation 
affected the rocky desertification of different karst landforms. Therefore, there were some 
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There was a distinct discrepancy in rocky desertification at different slope gradient
levels (Figure 2b). The rock outcrops increased with increasing slope gradient, indicating a
gradually increase of rocky desertification with slope gradient. The rocky desertification
related to different slope gradients was divided into three gradient levels. The A type
rock outcrops were the first level, B and C types belonged to the second level, and D type
was the third level. For low rocky desertification degrees, the spatial discrepancy was
relatively low. Significant discrepancies were found among rock outcrops with different
slope aspects, and the average rock outcrop ratios of different slope aspects ranged from
0.18 to 0.35. The different slope aspects in order of decreasing rock outcrop area were south
(0.35) > southeast (0.31) > east (0.26) = southwest (0.26) > northeast (0.23) = west (0.23) >
northwest (0.21) > north (0.18) (Figure 2c). Rock outcrops gradually increased with the
retrogressive succession of vegetation; the different vegetation types in decreasing order
of rock outcrop area were deciduous shrub forest > meadow > evergreen shrub forest >
deciduous broadleaved forest > evergreen broadleaved forest > evergreen coniferous forest.
The rock outcrops under evergreen coniferous forest and evergreen broadleaved forest were
similar, and their rocky desertification degrees were low. The rocky desertification degrees
of shrub forest and meadow were greater than the other vegetation types (Figure 2d). In
summary, the variation in rock outcrops under deciduous forest was greater than under
evergreen forest, the main reason being that the coverage of a deciduous forest changes
seasonally.

The lithological properties of the underlying geological layers (strata) are the basis of
soil formation, and are an important factor in rocky desertification occurrence. The main
components of carbonate in karst areas include limestone and dolomite. Carbonate rock
is easily eroded, especially under acidic conditions, which worsens soil erosion. The rock
outcrop percentages in areas underlain by limestone were higher than areas underlain by
dolomite under the same vegetation type. For limestone bedrock, the vegetation types in
order of by rocky desertification degree were shrub forest > grass > tree forest, and the order
for dolomite bedrock was grass > shrub forest > tree forest (Figure 2e). Climate change,
especially changes in rainfall, can influence the processes involved in rocky desertification.
In order of decreasing average annual rainfall, the landforms in the study regions were
KPB > KPCD> KLH > KC > KTV, and in order of rocky desertification degree the landforms
were KC > KPB > KPCD > KTV > KLH (Figure 2f). The distribution characteristics of
rainfall and rocky desertification were consistent to a certain extent. Vegetation affected the
rocky desertification of different karst landforms. Therefore, there were some differences
between the landform order for rainfall and rocky desertification. For example, while the
rainfall in KLH was higher than KTV and KC, the rocky desertification in KLH was the
lowest because of the abundant vegetation.
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3.4. Factors Affecting the Distribution Characteristics of SBD

According to the SBD information in Figure 1a, the SBD gradually increased from the
surface soil layer to a depth of 40 cm, while the trend in the 40–100 cm soil layer in different
karst landforms differed. Different factors affected the SBD in the 0–40 cm soil layers. The
SBD increased gradually with soil depth at each slope position, and there was a significant
regular spatial distribution of SBD at different slope positions with a decreasing order of
zone II > zone I > zone III > zone IV. This phenomenon suggests that the SBD values in flat
ground and the lower part of the mountain are higher than the upper parts of the mountain
(Figure 3a). However, there was no significant regular distribution of SBD in each soil layer
under the influence of the slope gradient. The SBD values of the A type, B type and C
type were distinctly higher than the D type in the 0–5 cm soil layer. The SBD in the A type
was significantly higher than the other slope gradient types in the 5–10 cm soil layer, and
these values in the B type, C type and D type were similar. The spatial distribution of SBD
in each soil layer from 10–30 cm was the same under different slope gradients, and the
descending order of SBD in different slope gradients was A type > C type > B type > D
type. The distribution trend of SBD in the 30–40 cm soil layer was A type > B type > C type
> D type (Figure 3b). In summary, there were few differences in SBD in the surface soil
layers, and the SBD gently decreased with increasing slope gradient in the lower soil layer.
The difference in SBD in different slope aspects was small except in the east and southeast
aspects. The SBD values in the east and southeast aspects were significantly higher and
lower than the other slope aspects, respectively. Overall, the descending order of SBD in
different slope aspects was east > west > southwest > south > northwest > north > northeast
> southeast, and the average SBD on sunny slopes was generally slightly higher than shady
slopes (Figure 3c). There was a regular spatial distribution characteristic of SBD under
the influence of different vegetation types. The SBD values under evergreen coniferous
forest, evergreen broadleaved forest and deciduous broadleaved forest were similar, and
their SBD values were assigned to the first level. The SBD values under evergreen shrub
forest, deciduous shrub forest and grass belonged to the second level, and the SBD values
of the first level were significantly lower than the second level, indicating that the SBD
under tree forest was generally lower than under shrub and grass. There was a regular
distribution of SBD in different vegetation types in the second level, i.e., evergreen shrub
forest > deciduous shrub forest > grass. The SBD values under evergreen forests were
slightly higher than under deciduous forests (Figure 3d). In order to analyze the impact
of lithology on the SBD, the SBD distribution characteristics driven by the two main rock
types, i.e., limestone and dolomite, under different vegetation types were investigated. The
SBD over dolomite bedrock was higher than the SBD over limestone bedrock, and there
was a significant regular distribution of SBD under different vegetation types on the same
bedrock, i.e., grass > shrub forest > tree forest (Figure 3e). There was a negative correlation
between SBD and rock outcrops (n = 356, r = −0.18, p < 0.01), which indicates that a higher
rocky desertification degree limits the increase in SBD (Figure 3f).

3.5. The SOC Content Response to Different Factors

Different factors influenced the SOC contents, and their spatial distribution charac-
teristics coupled with the process of rocky desertification are listed in Figure 4. The SOC
content decreased quickly and regularly in each soil layer from the surface to a depth
of 50 cm at different slope positions. The descending order of SOC content at different
slope positions in the 0–40 cm soil layer was zone II > zone I > zone > zone IV > zone III,
which reveals that the SOC gradually increased at first, then quickly decreased, and finally
increased slightly from flat ground to mountain foot to mountain top, respectively. The
SOC contents in zones I and II were generally higher than zones III and IV in the 40–100 cm
soil layer, and the discrepancies in the SOC contents in the subsoil layers were lower than
the upper soil layers (Figure 4a). This discrepancy occurred because the soil thickness in flat
ground and the mountain foot was thick, and the vegetation was more abundant. However,
humans disturbed mountaintops less, and the SOC accumulated under the influence of
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the microtopography. The distribution characteristics of the SOC contents in response to
different slope gradients are shown in Figure 4b. The descending order of SOC content in
each soil layer in the 0–30 cm layer among the different slope gradients was B type > C type
> D type > A type. The SOC content quickly increased from the A type to the B type, and
the SOC content in the B type was significantly higher than the other slope gradient groups.
There was a lack of a significant regular distribution in SOC content in the subsoil layer at
different slope gradients, except that the SOC content in the D type was generally slightly
higher than the other slope gradient groups. The distribution characteristics of the SOC
content in different slope gradients showed that the SOC content along the slope gradient
first increased, then decreased. This distribution phenomenon of SOC content was a result
of the contribution of some advantageous microtopographies such as rock basins, grooves,
and crevices. Microtopography provides an advantageous place for the accumulation of
organic matter, including the branches and leaves of trees and the bodies and feces of
animals. To analyze the SOC content response to changes in slope aspect, the relationship
between SOC content and different slope aspects was analyzed. The results showed that
the descending order of SOC content in different slope aspects was north > northwest >
east > northeast > west > southwest > south > southeast (Figure 4c). In summary, the SOC
content in the northern aspect of the mountain was higher than the other slope aspects,
while the SOC content in the south aspect was generally lower than the other slope aspects.
This phenomenon occurred because the geographic environments of the different slope
aspects were different. There were some differences in SOC content in different soil lay-
ers under different vegetation types. The descending order of SOC content in different
vegetation types in the 0–30 cm soil layer was deciduous broadleaved forest > evergreen
broadleaved forest > evergreen coniferous forest > deciduous shrub forest > evergreen
shrub forest > grass. The descending order of SOC content in the 30–100 cm soil layer
was evergreen coniferous forest > evergreen broadleaved forest > deciduous broadleaved
forest > evergreen shrub forest > deciduous shrub forest > grass (Figure 4d). Evergreen
coniferous, evergreen broadleaved and deciduous broadleaved trees all form tree forests,
and the SOC content in soils under tree forest was generally greater than shrub forest
areas and grassland. The average SOC content in soil originating from limestone bedrock
was greater than soil originating from dolomite. The SOC content in soil originating from
limestone was greater than soil originating from dolomite under all different vegetation
types (Figure 4e). The rock outcrops and SOC contents of soils originating from limestone
were greater than soils originating from dolomite. This result is due to limestone being
easily eroded, and because its microtopography (stony basin, stony trough, stony gully,
etc.) is more complex than that of dolomite; favorable terrain promotes enrichment of
SOC. There was a significant negative correlation between SBD and SOC content (n = 838,
r = −0.28, p < 0.01). However, the relationship between rock outcrops and SOC content
was slightly positive (n = 358, r = 0.15, p < 0.05) (Figure 4f,g). This result likely indicates
that a certain lower level of rock outcrops promotes SOC accumulation, which comes from
the contribution of gathering effects. Therefore, the SOC concentration increased from
lower to moderate degrees of rocky desertification. When rocky desertification became
intense, the SOC concentration rapidly decreased (Figure 4h). The relationships between
SOC content and different impact factors are presented in Figure 5i. The factors affecting
the SOC in the 0–5 cm and 5–10 cm soil layers were similar. The main factors affecting
the SOC in the 10–15 cm and 15–20 cm soil layers were similar, and the SOC content of
the soil at the soil–bedrock interface was highly impacted by lithology. Based on gradient
boosting decision tree (GBDT) analysis, the descending order of different factors was rock
outcrops > SBD > vegetation > lithology > slope position > slope gradient > slope aspect,
and their percentage contributions were 33.76%, 30.34%, 17.96%, 8.64%, 4.55%, 2.80% and
1.95%, respectively (Figure 4j). In summary, the slope position, gradient and aspect affected
SOC by influencing plant growth, SBD and rocky desertification. Therefore, slope position,
gradient and aspect are indirect influencing factors, and vegetation, rocky desertification
and SBD are direct influencing factors of the SOC content.
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3.6. The SOCD Spatial Distribution Characteristics

The spatial distribution characteristics of the SOCD response to different slope posi-
tions showed an obvious regular distribution of SOCD in most soil profiles. The descending
order of SOCD at different slope positions in all soil profiles was zone II > zone I > zone III >
zone IV. There was a significant increase in SOCD in the 0–50 cm layers, with increasing soil
thickness at all slope positions. Especially at 10–20 cm, the SOCD increased considerably.
The increase in SOCD was small in the 50–100 cm soil layer at different slope positions
(Figure 5a). The discrepancies in SOCD among the slope positions gradually increased
with increasing soil thickness. There was a greater discrepancy in SOCD at different soil
depths, which was driven by the slope gradient. The difference in SOCD with different
slope gradients was slight in the topsoil layer (0–10 cm), and the SOCD range among
different slope gradients was only 0.18 kg·m−2. The descending order of SOCD in the
0–30 cm soil layer for different slopes was C type > A type > B type > D type, and the
SOCD range was 0.63 kg·m−2. From the 0–30 to 0–100 cm soil layers, the descending order
of SOCD for different slopes was A type > C type > D type > B type, and the SOCD range
reached 3.51 kg·m−2 (Figure 5b). Therefore, there was no stable order of SOCD among
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different slopes with increasing soil thickness. The range of SOCD increased gradually
with increasing soil depth. In summary, the discrepancy in SOCD among different slopes
increased gradually with increasing soil thickness, and the SOCD for gentle slopes was
generally greater than steep slopes. The distribution information of SOCD in the 0–20,
0–50, and 0–100 cm soil layers with different slope aspects is shown in Figure 5c. The
descending order of SOCD in the 0–20 cm soil layer in different slope aspects was north >
northwest > northeast > west > east > southwest > southeast > south, and the SOCD range
was 0.52 kg·m−2. The descending order of SOCD in the 0–50 cm soil layer in different slope
aspects was north > west > northeast > east > northeast > southwest > southeast > south;
this order was slightly different from the 0–20 cm layer. The SOCD range was 0.77 kg·m−2.
The SOCD in the 0–100 cm soil layer for different aspects ranged from 6.72 to 9.39 kg·m−2,
and the descending order for different slope aspects was similar to the 0–20 cm soil layer.
In summary, the SOCD in the north aspect was greater than in the other slope aspects,
while, the SOCD in the south aspect was generally lower than in the other slope aspects.
Because the north aspect was a shady slope, its vegetation and soil thickness were greater
than the south aspect. The south aspect was a sunny slope, and its rocky desertification
was generally more severe than the other slope aspects. There was a significant regular
distribution of SOCD with change in the rocky desertification process. The SOCD decreased
gradually with aggravation of the rocky desertification degree. The discrepancy in SOCD
at different rocky desertification levels gradually increased with soil depth. There was little
difference in SOCD in the 0–20 cm soil layer at different degrees of rocky desertification,
and the range was only 0.71 kg·m−2. The SOCD range of the 0–100 cm soil layer reached
5.93 kg·m−2, which was 8.36 times greater than the 0–20 cm soil layer. The accumulation of
SOCD from the surface soil layer (0–20 cm) to the subsoil layer (0–100 cm) in light rocky
desertification areas was significant, but it was not distinct in severe rocky desertification
areas (Figure 5d).
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Figure 4. The spatial distribution characteristics of SOC are affected by different factors: (a–h) show
the relationship between SOC content and slope position, gradient, aspect, vegetation, lithology,
SBD, rock outcrops and changes in rocky desertification, respectively; (i) shows the RDA of the SOC
content in the main soil layer and different impact factors; (j) shows the sorting of different factors
affecting the SOC content by GBDT.
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3.7. The Evolution Characteristics of SOC Storage Capability

The microtopography is complex under karst landforms, and soils are noncontinuous
and shallow. The rocky desertification degree of different karst landforms is different,
which results in discrepancies of SOC storage capacity. SOC storage is characterized by
SOCD; thus, the changes in SOCD trends can help to evaluate the characteristics of SOC
storage capacity evolution in soil. The SOCD of each soil layer in the vertical direction first
increased, then decreased gradually. SOCD reached its peak value in the 5–10 cm soil layer.
This result indicates that the SOC storage capacity in the 5–10 cm soil layer was the greatest.
The SOC storage capacity of the deeper soil layers decreased gradually to the 40–50 cm soil
layer. Little difference existed in the SOC storage capacity among the different soil layers
from 50–100 cm. However, the discrepancy in SOC storage capacity increased gradually
from the 0–5 cm to the 90–100 cm soil layer, and all of the variation coefficients exhibited
high variation (Figure 6a). To analyze the SOC storage capacity in different karst landforms,
SOCD in similar environments and microtopographies was compared within different
karst landforms. The SOC storage capacity of different karst landforms in the 0–30 cm soil
layer decreased in the order KTV > KLH > KPCD > KC > KPB. The SOC storage capacity
in the 0–50 cm soil layers of KLH and KTV was significantly greater than in the other
karst landforms. The SOC storage capacity in KPCD and KPB were similar, and the SOC
storage capacity in KC was significantly lower than in the other karst landforms. The SOC
storage capacity in the 0–100 cm layer of KPCD was slightly greater than KPB, and both



Forests 2022, 13, 28 15 of 21

areas belonged to the first gradient level. The SOC storage capacity in KLH was similar to
KTV, and both areas belonged to the second gradient level. The SOC storage capacity in
the KC was the third gradient level, and its SOC storage capacity was significantly lower
than the other karst landforms (Figure 6b). The SOCD decreased with increasing rocky
desertification degree, and the SOC storage capacity gradually decreased in the low rocky
desertification classes, that is, classes 1–3. From class 3 to class 5, the SOC storage capacity
sharply decreased (Figure 6c). For further study of the SOC storage capacity of different
karst landforms coupled with rocky desertification, the percentage of the SOCD fraction
of different karst landforms with different rocky desertification degrees was determined.
The descending order of SOCD proportion for rocky desertification degree of grade 1 in
different karst landforms was KLH (71%) > KPCD (68%) > KTV (67%) > KPB (63%) > KC
(56%). The descending order of SOCD proportion for rocky desertification degree of grade
2 in different karst landforms was KC (17%) > KPB (16%) > KPCD (15%) > KTV (14%) >
KVF (13%). The SOC storage capacity contributions in the different karst landforms were
primarily associated with rocky desertification grades 1 and 2, and their contribution rates
were 86% (KLH), 83% (KPCD), 73% (KC), 79% (KPB) and 81% (KTV). The SOC storage
capacity contribution rate of high rocky desertification (grades 4 and 5) was higher for KC
than the other karst landforms (Figure 6d). These results indicate that SOC storage capacity
is primarily associated with low rocky desertification areas for all karst landforms.
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Figure 6. Information on SOC storage capacity spatial distribution. Panel (a) shows the vertical
distribution of SOCD; (b) shows the SOCD in different karst landforms; (c) shows the change trend
of SOCD with rocky desertification process; (d) shows the percentage of SOC storage capacity
contribution in different rocky desertification degrees in different karst landforms.
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4. Discussion
4.1. The Relationships among SOC, SBD and Rocky Desertification Processes in Karst Areas

SOC, SBD and rocky desertification are important indexes of soil and the eco-environment
in karst areas [16,19]. The relationships among rocky desertification, SBD, SOC and SOCD
were analyzed using Pearson correlation analysis (Table 3). SBD is an important index of
the degree of soil maturation, and the SBD of raw soil is generally higher than mature soil.
Because rocky desertification aggravates soil erosion, weathered soil covers the bedrock.
However, the relationship between SBD and rocky desertification may be discussed in
two aspects. First, the density of raw soil from weathered bedrock is greater than mature
soil. Therefore, the density of soil in rocky desertification areas is theoretically higher
than in nonrocky desertification areas. Second, microtopography in rocky desertification
areas is favorable for gathering soil and organic matter. Therefore, soil in microtopography
has a low SBD and a high SOC content [21]. This distribution may be the reason SBD
was negatively correlated with rocky desertification and why SOC content was positively
correlated with rocky desertification. Rocky desertification reflects the intensity of human
disturbance. Organic matter easily infiltrates the deep soil layer. However, organic matter is
easily washed away by heavy rain in areas with severe rocky desertification [15,19]. SOCD
was negatively correlated with rocky desertification. The correlation coefficient between
SBD and SOC was −0.367**, which indicates that SBD is an important factor in limiting the
SOC content in soils [16]. In contrast, a significant positive correlation was found between
SBD and SOCD, a result which is consistent with Huang [22] and Wang [27].

Table 3. Pearson correlation analysis of SOC, SOCD, SBD and rock outcrops.

Rock Outcrops SBD SOC SOCD

Rock outcrops 1
SBD −0.231 ** 1
SOC 0.052 −0.367 ** 1

SOCD −0.172 0.076 ** 0.520 ** 1
** Correlation is significant at the 0.01 level.

4.2. The Transformation of SOC Storage Capacity during the Development of Karst Landforms

The development of karst is based on a long period of geological and climatic sta-
bility; the main bedrock composition is carbonate rocks [42]. The bedrock of karst areas
is dissolved, which results in landform changes. There are considerable differences in
ecology and environment among the different karst landform stages, and the soil erosion
strength and rocky desertification characteristics are also different. Therefore, there are
great differences in the spatial distribution characteristics and storage capacity of SOC
among different karst landforms [15,22]. The rocky desertification distribution characteris-
tics of karst landforms evolves with the succession process of vegetation. In KPB and KTV
(stage I), vegetation was destroyed to develop agriculture, resulting in a gradual increase
in rocky desertification. Rocky desertification in KC (stage II) reached an even higher
level; vegetation was sparse, and soil erosion was severe. The vegetation in KPCD (stage
III) gradually recovered, especially shrub forests. The vegetation types in KHL (stage IV)
included multiple plant mixtures, including trees, shrubs and grass, and the soil thickness
increased. Stage IV areas are good for developing agricultural land and easily disturbed
by production activities, which leads to a slight increase in soil erosion. The SOC storage
capacity in the different evolution stages of karst landform evolution first decreased, then
gradually increased (Figure 7a). The SOC storage capacity in stage II quickly decreased
from stage I, then increased sharply in stage III. The rate of increase slowed in stage IV. The
SOC storage capacity in different karst landform stages was negatively associated with
the degree of rocky desertification. The contribution rate of SOC storage at different soil
depths was different in different karst stages. The descending order of the SOC storage
contribution rate of the different karst stages in the 0–20 cm soil layer was stage II (0.61) >
stage II (0.53) > stage I (0.44) > stage IV (0.41). The descending order in the 20–40 cm soil
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layer was stage III (0.28) > stage I (0.27) > stage II (0.24) > stage IV (0.23). However, the
descending order in the 40–100 cm soil layer was stage IV (0.36) > stage I (0.29) > stage III
(0.20) > stage II (0.14) (Figure 7b). These results reveal that the contribution to SOC storage
primarily comes from soils thicker than 40 cm, especially in stage II, and the contribution
rate reaches 0.85. For stage II, the upper soil erosion was severe, which led to a decrease in
the SOC storage capacity. The soil thicknesses of stages I and IV were thicker than stages II
and III. Therefore, the discrepancies in SOC storage capacity in each soil layer in stages I
and IV were lower than stages II and IV. Therefore, the stabilities of SOC storage capacity
in different soil layers in stages I and IV were greater than stages II and III. The variation in
SOC storage capacity related to karst landform evolution stages indicates that SOC storage
capacity is closely associated with karst landform evolution.
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4.3. The Reliability of Geographic Environmental Factors in SOC Spatial Reconstruction

According to the information on rocky desertification and the SBD and SOC data
shown in Figures 2–4, rocky desertification, SBD and vegetation directly impact SOC.
Vegetation was the key factor for rocky desertification and SBD, and the spatial distribution
discrepancies of vegetation were accompanied by changes in slope position, gradient and
aspect. In general, the lower rocky desertification of flat ground and mountain foothill
areas resulted in greater soil thickness and lush vegetation. In contrast, the middle and
upper parts of the mountains featured a simple and unitary environmental structure that
led to higher degrees of rocky desertification. Lower slope gradients were primarily found
in flat ground and mountain foothill areas, and the soil in these regions was thicker, more
uniform and more continuous. The soil thickness decreased, rock outcrops increased, and
vegetation coverage decreased with an increase in slope gradient and the tendency to form
steep slopes. The ecological structure became simple and weak thereafter. The southern
aspect of mountains in the Northern Hemisphere features sunny slopes, and the northern
aspect is associated with shady slopes. On sunny slopes, soil moisture is easily reduced
by evaporation, which results in drier, denser and harder soil. The soil fertility on sunny
slopes is generally poorer than other slopes. On shady slopes, the sunshine is warm and
less intense, and the temperature and evaporation are lower than on sunny slopes, which
results in the soil being moist and rich in organic matter. Overall, the vegetation on shady
slopes is more lush than sunny slopes. Therefore, the rocky desertification of sunny slopes
is generally more serious than shady slopes.

Areas of flat ground are generally cultivated, and chemical fertilizer is widely applied
to the soil. Chemical fertilizers include calcium and nitrogen, which improve the SOC
storage capacity [43]. These factors may be why the SOC contents in KTV and KLH were
greater than the other karst landforms. The soil was thick in mountain foothill areas and
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vegetation was abundant, which enhanced organic matter accumulation and soil fertility.
The following factors may explain SOC accumulation at mountain summits: (a) the summit
is less disturbed, and shrub and grass cover is higher than at the middle elevations of the
mountains; (b) the low temperature of the summit leads to a low decomposition rate of
SOC; and (c) the microtopography may produce a gathering effect. The impact of rocky
desertification and slope gradient on the distribution characteristics of SOC were similar
to the changes in SOC with slope position. Areas with gentle slopes are generally used
as farmland. Areas with steep slopes are less disturbed and not suitable for agricultural
production. A certain slope gradient promotes SOC accumulation under the influence of
microtopography (such as rock basins, grooves, crevices, etc.). However, the SOC decreases
gradually when the slope gradient exceeds a certain value because rocky desertification
becomes more serious. Many other factors including sunshine, temperature, rainfall, wind,
soil properties and vegetation vary among different slope aspects. On sunny slopes, the
total sunshine is high, the reflectivity is low, and the temperature and evaporation are
high, which results in harder, thinner and drier soil. On shady slopes, the temperature
and water evaporation are lower, and the soil moisture is generally higher. Vegetation is
generally lush on shady slopes compared to sunny slopes, and the soil fertility of shady
slopes is higher than sunny slopes. Sunny slopes are directly exposed to the sun, and the
decomposition rate of SOC is faster on sunny slopes than shady slopes. Therefore, the SOC
content in areas on the north aspect of the mountain is higher than areas on the other slope
aspects.

The SOC content in the upper soil horizon of 0–50 cm exhibited some discrepancies
related to different slope positions, slope gradients and slope aspects, and its variation coef-
ficients reached a highly variable level. This result is similar to Zhang [14] and Wang [15].
The SOC decreased in the upper 50 cm of soils, and the rate of decrease was low in deeper
soils (50–100 cm), which indicates that 50 cm is a key depth for the SOC content in soil pro-
files. Under the same conditions, the SOC content of forest soil was greater than soils with
other land uses. Therefore, forests promote SOC accumulation, especially in the surface
soil [36,44]. As shown in Figure 6, the ranges of SOCD at different slope positions, slope gra-
dients and slope aspects were 3.99–4.57 kg·m−2, 3.97–4.42 kg·m−2 and 3.85–4.37 kg·m−2,
respectively. These values are similar to the results of Huang et al. (2018b). For the
0–100 soil horizon, the SOCD ranges for different slope positions, slope gradients and slope
aspects were 7.12 to 9.16 kg·m−2, 6.29 to 9.80 kg·m−2 and 6.71 to 9.39 kg·m−2, respectively.
All of these values are lower than 10.53 kg·m−2, which is the mean SOCD in China [45].
While these values are lower than those for loess hills (10.92 kg·m−2) [46], the SOCD spatial
distribution characteristics and the associated ranges in the present study are similar to
previous studies [26]. The vertical spatial distribution characteristics of SOCD related to
different slope positions, slope gradients and slope aspects are similar to the results of Sub-
ramanian et al. [47]. All of these results suggest similar spatial distribution characteristics
and ranges of SOCD in different karst areas; these characteristics and ranges are different
from non-karst landforms.

In summary, based on the present study the distribution characteristics of SOC were
directly associated with rocky desertification, SBD, and vegetation, and indirectly associ-
ated with slope position, slope gradient, slope aspect, soil lithology and rainfall. Rocky
desertification in the evolution process of karst landforms is an important indicator of SOC
storage capacity.

5. Conclusions

There were some discrepancies in SOC and SOCD among the different karst land-
forms; the value in the 0–100 cm soil horizon ranged from 4.62 to 38.29 g·kg−1 and
2.04–10.79 kg·m−2. The SOC content decreased quickly in the 0–50 cm soil horizon, and
gently in the 50–100 cm soil horizon. From mountain foothills to summit, the SOC content
first increased, then decreased quickly, and finally increased slightly. The SOC content
generally decreased with increasing slope gradient. However, this regular distribution may
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be out of order, sometimes due to microtopography. The SOC content in the northern aspect
of mountains was generally higher than the southern aspect. Rocky desertification, soil
bulk density and vegetation had direct impacts on the spatial distribution of SOC. Slope
position, slope gradient, slope aspect, soil lithology and rainfall were indirect impacting
factors. The descending order of different impact factors was rocky desertification > soil
bulk density > vegetation > soil lithology > slope position > slope gradient > slope aspect.
The increased range of SOCD was significant in each soil layer from the surface to a 40 cm
soil depth, and was small in subsoil layers of 50–100 cm for different karst landforms. Rocky
desertification was the key indicator of SOC storage in the different evolution stages of
karst landforms. During the process of karst landform evolution, the SOC storage capacity
decreased during infancy and youth, then increased gradually from youth to maturity. The
SOC storage capacity in the youth period was obviously lower than in the infancy and
older period. SOC storage capacity was primarily associated with the upper soil horizon
(0–40 cm) for all karst landforms, especially karst canyons. The structural stability of SOC
storage capacity in the infancy and maturity periods was greater than in youth and middle
age, and the anti-interference ability of SOC storage capacity was greater. The relationship
between carbon balance and rocky desertification was not considered in this study. There-
fore, further studies are needed in order to reveal the transformation of SOC fractions with
rocky desertification in order to further support ecosystem services in karst areas.
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