
1. Introduction
The occurrence of groundwater flooding, and the associated damage and disruption that results, has become more 
frequently studied in recent decades. Several notable groundwater flooding events have taken place in recent 
history, many linked to karst catchments, whereby this phenomenon has become recognised as a hazard which 
must be accounted for when planning and managing new and existing developments (e.g., flood risk assessments; 
Cobby et al., 2009). For example, extensive karst-related groundwater flooding occurred in winter 2000/2001 
in the chalk catchments of southern England and in the Somme Basin in France (Hughes et al., 2011; Pinault 
et al., 2005); as well as being reported in the Dinaric karst region of south-eastern Europe in poljes (Ristic, 1976) 
and the Unica river basin in Slovenia (Kovacic & Ravbar, 2010). In Ireland, there was considerable ground-
water flooding in the karst of south-west Galway in 2009 and 2015/2016 (Morrissey et  al.,  2020; Naughton 
et al., 2017) which caused prolonged and wide-spread flooding. Whilst groundwater flooding is less hazardous 
when compared to fluvial flooding in terms of acute risk to life, it can persist for much longer durations resulting 
in significant cost and disruption. Such flood events are also likely to get more frequent and more serious as a 
result of changes to the climate over the next few decades, in particular the predictions of more intense rainfall 
during winter months (Blöschl et al., 2019; Noone et al., 2017).

In karst limestone areas interactions between ground and surface waters can be frequent, linked to the unique 
hydrogeological dynamics of that bedrock aquifer, with sinking and rising rivers/streams common and surface 
water features absent completely in many areas (Drew, 2008). If the fractures or conduits within the limestone, 
which regulate the main flow paths through such secondary porosity dominated rocks, are unable to drain the 
recharge fast enough during intense or prolonged rainfall events, this can result in groundwater surcharging from 
the network above ground level. This flood water can be contained temporarily within low-lying topographic 
depressions known as turloughs in Ireland, which represent the principal form of extensive, recurrent groundwa-
ter flooding in Ireland (Naughton et al., 2012) or, more generally in karst areas, in poljes (Bonacci, 2014). Such 
flood events in karst areas are a function of long periods of cumulative rainfall, as well as antecedent storage 
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conditions and so prove to be difficult to characterize by normal hydrological flood risk approaches taken for 
fluvial flooding events (Morrissey et al., 2020).

Different approaches have been developed to modeling karst aquifers with their inherent complex spatial and 
temporal heterogeneities (White & White, 2005), from data driven (lumped parameter) models through to more 
physically based distributed hydrodynamic models, with various forms of semi-distributed models in between 
(Ghasemizadeh et al., 2012; Kovács & Sauter, 2007).

The data driven models relate an input rainfall signal to an output spring discharge using a transfer function (e.g., 
Dreiss, 1982; Jukic & Denic-Jukic, 2008). Due to the time-invariant limitations of some transfer function tech-
niques, non-parametric transfer functions have been used to capture non-linear and non-stationary dynamics of 
karst aquifers more accurately based on, for example, the spectral (frequency) domain (Bailly-Comte et al., 2008; 
Labat et al., 2000; Larocque et al., 1998) and time/frequency domains using wavelets (Labat et al., 2001; Schuler 
et al., 2020).

More physically distributed, hydrodynamic modeling approaches require much higher levels of input information; 
aquifers can be subdivided into small-scale two- or three-dimensional grids with hydraulic parameters and system 
states defined throughout (Abusaada & Sauter, 2013; Gill et al., 2020; Hartmann et al., 2014). However, given 
that detailed knowledge of the inner structure of most karst networks is generally unknown (Borghi et al., 2016), 
the value of such highly parameterized models is a recurrent debate in hydro(geo)logy (Beven,  2006). In 
between  this, more hybrid, semi-distributed models generally use conceptual reservoirs to control areal recharge 
processes, but then attempt to model the hydraulic dynamics of the high flow conduit network more realistically 
using specific pipe network morphometry (Chen & Goldscheider, 2014; Gill, Naughton, & Johnston, 2013). It 
is these types of models that seem to have been most successful in simulating groundwater-surface water inter-
actions in karst catchments, for example, in poljes (Mayaud et al., 2019) and in turloughs (Gill, Naughton, & 
Johnston, 2013; McCormack et al., 2016).

Due to the limitation of linear models in the prediction/forecasting of hydrological systems, nonlinear models 
are gaining interest. Different techniques, including various machine learning approaches, have been used in 
conjunction with groundwater research, including studies on karst systems (Al-Fugara et al., 2020; Hu et al., 2008; 
Kurtulus & Razack, 2007; Naghibi et al., 2017). In situations where nonlinear models have been developed to 
understand hydrological systems, neural network-based machine learning algorithms have mainly been used. A 
popular nonlinear hydrological model is the neural network based nonlinear Auto Regressive model with exog-
enous variables (NN-NARX). This has been used to forecast future river flood levels based on real-time level 
gauges along a catchment with meteorological inputs (Lee & Resdi, 2016) as well as to forecast flooding in Taipei 
city (Taiwan) up to an hour in advance (Chang et al., 2014). Equally, three variants of NN-NARX models have 
been used on a recurrent neural network to predict multi-step ahead flood inundation depth using rainfall as the 
exogenous variable by Shen and Chang (2013). A few studies have focused on prediction/forecasting of ground-
water dynamics using network based NN-NARX models. Guzman et al. (2017) considered 8 years of daily histor-
ical precipitation and groundwater level to train network based NN-NARX model using Levenberg-Marquardt 
and Bayesian Regularization algorithms at Mississippi River Valley Alluvial aquifer, which was then used to 
predict groundwater levels up to 90 days ahead. Wunsch et al. (2018) developed a network based NN-NARX 
model by considering precipitation and temperature as the exogenous variables to forecast groundwater levels 
in several wells in southwest Germany up to 26 days in the future. The main advantage of such network-based 
nonlinear models is that they do not require a detailed understanding of the complex hydrological system and are 
found to be robust in situations where uncertain information is present in the data (ASCE, 2000a; 2000b); their 
disadvantage is that the models do not provide any explicit mathematical expression to approximate the hydro-
logical system (Lee & Resdi, 2016).

This study develops and compares nonlinear time-series analysis based NARX models, machine learning based 
nonlinear Support Vector Regression (SVR) model, and a linear time-series ARX model in terms of their perfor-
mance to predict groundwater flooding in a lowland karst area of Ireland. The models have been developed 
upon the results of several years of field data collected in the area, as well as the outputs of a highly calibrated 
semi-distributed hydraulic/hydrological model of the karst network and its allogenic recharge catchments. A new 
formulation has been developed to extend the optimum NARX model with single exogenous variables to multi-
ple exogenous variables. This study also demonstrates the concept of first identifying the optimal lags for each 
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variable as part of the model optimisation process (Wunsch et al., 2021) which affects the forecasted output, from 
which only the critical ones are then used as input variables.

2. Methods—Modeling Approaches and Performance Evaluation
In situations where the system to be modeled is essentially linear in nature, any input-output (IO) relation-based 
linear model, such as an auto regressive time series model with exogenous variable(s) (ARX), an impulse 
response function based model, or a state-space model can be used, provided the model order is correct and the 
noise in the measurements are accommodated (Billings, 2013). However, most natural hydrologic systems are 
found to be nonlinear in nature and hence a linear modeling approach may not be valid (Amorocho, 1967; Amoro-
cho & Brandstetter, 1971; Jacoby, 1966; Jayawardena & Lai, 1994; Kavvas, 2003; Sivakumar & Singh, 2012). It 
is extremely difficult to relate any two nonlinear models and hence there is no unique nonlinear model present 
that can represent all types of nonlinear systems. However, a nonlinear time series model called Nonlinear Auto 
Regressive model with exogenous variable(s) (NARX) has been found to cover the broadest set of nonlinear 
systems (Billings,  2013). The NARX model or the NARMAX model, where the NARX model is combined 
with the Moving Average (MA) error model, was first proposed in 1981 (Billings and Leontaritis, 1981) and 
has been subsequently developed by several researchers (Billings & Fadzil, 1985; Billings et al., 1988; Billings 
et al., 1989; Chen et al., 1989; Chen et al., 1991; Neshat et al., 2018; Swain & Billings, 2001; Wei et al., 2004). 
The main advantages of this model are that it is easy to implement, flexible to identify the nonlinearity present 
in the data, and can provide information on the degree of nonlinearity that is present in the system. This study 
describes two NARX models (NARX1 and NARX2) adapted from Billing (2013), where the first model has only 
one exogenous variable and the second model has two exogenous variables. Furthermore, a machine learning 
based nonlinear model, SVR model was used. For comparison purposes, a linear ARX model has also been 
considered in the study.

2.1. Nonlinear Auto Regressive Model With K Exogenous Variable (NARX)

The NARX model with 𝐴𝐴 𝐴𝐴 exogenous variables can be expressed as,

�(�) = � [�(� − 1), �(� − 2) ... , �(� − ��), �1(� − �1), �1(� − �1 − 1), ... , �1(� − �1 − ��1
+ 1), �2(� − �2), �2(� − �2 − 1), ... , �2(� − �2 − ��2 + 1), ... , �� (�

− �� ), �� (� − �� − 1), ... , �� (� − �� − ��� + 1)] + �(�)

 (1)

where y (t) is the system output variable at time t, {u1, u2,⋯, uK} are the K exogenous/system input variables, {d1, 
d2, ⋯,dK} are the time delay corresponding to each exogenous variable respectively, ny and {nu1, nu2,⋯,nuK} are 
the maximum number of lags for the system output and the K system input respectively, F[⋅] is some nonlinear 
function to be modeled/estimated, and e(t) is the noise at time t. In this study, the time delays were considered to 
be equal to zero d1 = d2 = ⋯ = dK = 0. It needs to be noted that not all the terms present in the model might be 
significant.

The challenge lies in selecting the nonlinear function F[−] as well as the maximum lags ny and {nu1, nu2,⋯,nuK}. 
Several model forms have been used for the function F[⋅] by researchers: polynomial models, radial basis func-
tions, rational models, neural networks, wavelets being a few examples (Billings, 2013). This study considered a 
polynomial model for the development of the NARX model because of the following advantages (Billings, 2013): 
(a) polynomials are smooth functions, (b) any continuous function within a closed interval can be approximated 
by a polynomial function (Weierstrass approximation theorem), hence a wide range of nonlinear systems can be 
modeled using polynomial NARX, (c) parameters of the model can be estimated efficiently and with less compu-
tational cost, and (d) since the model is a polynomial function, it can be easily written in a simple expression, 
which enables the modellers to interpret the nonlinearity of the underlying system. However, the polynomial form 
of the model does have limitations in situations where the natural system is severely nonlinear, in which case 
rational functions or wavelet functions can be used.

Considering F[⋅] takes the form of a nonlinear polynomial function with ℓ being the highest nonlinear degree of 
the polynomial, Equation 1 can be represented as (Billings & Voon, 1984),
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𝑦𝑦(𝑡𝑡) = 𝜃𝜃0 +

𝑛𝑛
∑

𝑖𝑖1=1

𝜃𝜃𝑖𝑖1𝑥𝑥𝑖𝑖1
(𝑡𝑡) +

𝑛𝑛
∑

𝑖𝑖1=1

𝑛𝑛
∑

𝑖𝑖2=𝑖𝑖1

𝜃𝜃𝑖𝑖1𝑖𝑖2𝑥𝑥𝑖𝑖1
(𝑡𝑡)𝑥𝑥𝑖𝑖2

(𝑡𝑡) +⋯ +

𝑛𝑛
∑

𝑖𝑖1=1

⋯

𝑛𝑛
∑

𝑖𝑖𝓁𝓁=𝑖𝑖𝓁𝓁−1

𝜃𝜃𝑖𝑖1𝑖𝑖2⋯𝑖𝑖𝓁𝓁
𝑥𝑥𝑖𝑖1

(𝑡𝑡)𝑥𝑥𝑖𝑖2
(𝑡𝑡)⋯ 𝑥𝑥𝑖𝑖𝓁𝓁

(𝑡𝑡) + 𝑒𝑒(𝑡𝑡) (2)
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��(�) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�(� − �) 1 ≤ � ≤ ��

�1(� − (� − �� + �1 − 1)) �� + 1 ≤ � ≤ �� + ��1
�2(� − (� − �� − ��1 + �2 − 1)) �� + ��1 + 1 ≤ � ≤ �� + ��1 + ��2

⋮

�� (� − (� − �� − ��1 −⋯ − ���−1 )) �� + ��1 +⋯ + ���−1 + 1 ≤ � ≤ �

 (3)

𝑛𝑛 = 𝑛𝑛𝑦𝑦 + 𝑛𝑛𝑢𝑢1 +⋯ + 𝑛𝑛𝑢𝑢𝐾𝐾 (4)

and 𝐴𝐴 𝐴𝐴𝑖𝑖1𝑖𝑖2⋯𝑖𝑖𝑚𝑚
 are model parameters. One point to be noted here is that the total number of potential terms M in the 

NARX model is equal to 𝐴𝐴 𝐴𝐴 = (𝑛𝑛𝑦𝑦 + 𝑛𝑛𝑢𝑢1 +⋯ + 𝑛𝑛𝑢𝑢𝐾𝐾 + 𝓁𝓁)!∕[(𝑛𝑛𝑦𝑦 + 𝑛𝑛𝑢𝑢1 +⋯ + 𝑛𝑛𝑢𝑢𝐾𝐾 )! × (𝓁𝓁)!], which implies that the 
number of potential terms increases substantially with an increase in the degree of nonlinearity ℓ. In situations 
where the degree of nonlinearity ℓ is chosen to be unity, the developed model will be a linear model, while a value 
of ℓ greater than unity indicates the presence of nonlinear terms in the model. Previous studies (Billings, 2013; 
Billings et al., 1988; Billings et al., 1989; Chen et al., 1989) indicate that the degree of nonlinearity ℓ equal to 
2 has the potential to develop NARX models exhibiting considerable output prediction accuracy. However, it 
should be noted that a higher degree of nonlinearity might be needed in situations where the complexity of the 
natural system is higher.

The parameters of the NARX model can be estimated using Orthogonal Least Squares (OLS) estimator (Bill-
ings, 2013; Billings et al., 1988). The first step is to represent Equation 2 into a function which is linear with the 
parameters, given by Equation 5.

𝑦𝑦(𝑡𝑡) =

𝑀𝑀
∑

𝑖𝑖=1

𝜃𝜃𝑖𝑖𝑝𝑝𝑖𝑖(𝑡𝑡) + 𝑒𝑒(𝑡𝑡); 𝑡𝑡 = 1,⋯ , 𝑁𝑁 (5)

where {y (t), t = 1,⋯, N} is the output sequence; {pi (t) = pi(x (t)); i = 1,⋯, M} are regressors from Equation 2 
that are formed by combinations of predetermined model variables chosen from vector x(t) = [x1 (t), x2 (t),⋯,xn 
(t)] T; {θi, i = 1,⋯, M} are the model parameters; and {e (t), t = 1,⋯, N} is the noise/error sequence. In order to 
solve Equation 5 using the OLS approach, it is necessary to assume that the model parameters are independent of 
the regressors, that is, ∂pi (t)/∂θj = 0 ∀i = 1,⋯, M; ∀j = 1,⋯, M.

Equation 5 can be rewritten in a matrix form as,

𝑌𝑌 = 𝑃𝑃Θ + E (6)

where

[𝑌𝑌 ]𝑁𝑁×1 = [𝑦𝑦(1), 𝑦𝑦(2),⋯ , 𝑦𝑦(𝑁𝑁)]
𝑇𝑇 

[Θ]𝑀𝑀×1 = [𝜃𝜃1, 𝜃𝜃2,⋯ , 𝜃𝜃𝑀𝑀 ]𝑇𝑇 

[E]𝑁𝑁×1 = [𝑒𝑒(1), 𝑒𝑒(2),⋯ , 𝑒𝑒(𝑁𝑁)]
𝑇𝑇 

[𝑃𝑃 ]𝑁𝑁×𝑀𝑀 = [p1, p2,⋯ , p
𝑀𝑀
] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑝1(1) ⋯ 𝑝𝑝𝑀𝑀 (1)

⋮ ⋱ ⋮

𝑝𝑝1(𝑁𝑁) ⋯ 𝑝𝑝𝑀𝑀 (𝑁𝑁)

⎤

⎥

⎥

⎥

⎥

⎦

 (7)

The objective of the OLS algorithm is to transform the non-orthogonal regression equation, given in Equation 5, 
to another regression equation whose regressors are orthogonal to each other. The advantage of this conversion is 
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that the model parameters {θi, i = 1,⋯, M} can be estimated independently in the transformed orthogonal regres-
sion form. The orthogonal regression equation can be expressed as,

𝑦𝑦(𝑡𝑡) =

𝑀𝑀
∑

𝑖𝑖=1

𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖(𝑡𝑡) + 𝑒𝑒(𝑡𝑡); 𝑡𝑡 = 1,⋯ , 𝑁𝑁 (8)

where {wi (t); i = 1,⋯, M} are orthogonal over the N data points, that is,

�
∑

�=1

��(�)��(�) =

⎧

⎪

⎨

⎪

⎩

∑�
�=1 �

2
� (�) ≠ 0 � = �

0 � ≠ �
 (9)

Based on OLS algorithm, the orthogonal terms can be estimated as,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑤𝑤1(𝑡𝑡) = 𝑝𝑝1(𝑡𝑡)

𝑤𝑤2(𝑡𝑡) = 𝑝𝑝2(𝑡𝑡) − 𝑎𝑎1,2𝑤𝑤1(𝑡𝑡)

𝑤𝑤3(𝑡𝑡) = 𝑝𝑝3(𝑡𝑡) − 𝑎𝑎1,3𝑤𝑤1(𝑡𝑡) − 𝑎𝑎2,3𝑤𝑤2(𝑡𝑡)

⋮

𝑤𝑤𝑚𝑚(𝑡𝑡) = 𝑝𝑝𝑚𝑚(𝑡𝑡) −
𝑚𝑚−1
∑

𝑟𝑟=1

𝑎𝑎𝑟𝑟,𝑚𝑚𝑤𝑤𝑟𝑟(𝑡𝑡);𝑚𝑚 = 2, 3,⋯ ,𝑀𝑀

 (10)

where

𝑎𝑎𝑟𝑟𝑟𝑟𝑟 =

∑𝑁𝑁

𝑡𝑡=1
𝑝𝑝𝑟𝑟(𝑡𝑡)𝑤𝑤𝑟𝑟(𝑡𝑡)

∑𝑁𝑁

𝑡𝑡=1
𝑤𝑤

2
𝑟𝑟 (𝑡𝑡)

; 1 ≤ 𝑟𝑟 ≤ 𝑟𝑟 − 1 (11)

Based on Equations 8 and 10,

𝑔𝑔𝑖𝑖 =

∑𝑁𝑁

𝑡𝑡=1
𝑦𝑦(𝑡𝑡)𝑤𝑤𝑖𝑖(𝑡𝑡)

∑𝑁𝑁

𝑡𝑡=1
𝑤𝑤

2

𝑖𝑖
(𝑡𝑡)

; 𝑖𝑖 = 1,⋯ ,𝑀𝑀 (12)

The model parameters can be estimated from the gi values as,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜃𝜃𝑀𝑀 = 𝑔𝑔𝑀𝑀

𝜃𝜃𝑀𝑀−1 = 𝑔𝑔𝑀𝑀−1 − 𝑎𝑎𝑀𝑀−1,𝑀𝑀𝜃𝜃𝑀𝑀

𝜃𝜃𝑀𝑀−2 = 𝑔𝑔𝑀𝑀−2 − 𝑎𝑎𝑀𝑀−2,𝑀𝑀−1𝜃𝜃𝑀𝑀−1 − 𝑎𝑎𝑀𝑀−2,𝑀𝑀𝜃𝜃𝑀𝑀

⋮

𝜃𝜃𝑚𝑚 = 𝑔𝑔𝑚𝑚 −
𝑀𝑀
∑

𝑗𝑗=𝑚𝑚+1

𝑎𝑎𝑚𝑚,𝑗𝑗𝜃𝜃𝑗𝑗 ;𝑚𝑚 = 𝑀𝑀 − 1,𝑀𝑀 − 2,⋯ , 1

 (13)

It should be noted that all the M terms in the NARX model (Equation 5) are not significant, and only a few terms 
are sufficient to obtain very accurate results. The reduction in error corresponding to each term of the NARX 
model, termed as Error Reduction Ratio (ERR), can be estimated as,

���� =

[

∑�
�=1 �(�)��(�)

]2

∑�
�=1 �2(�) ×

∑�
�=1 �

2
� (�)

; � = 1,⋯ ,� (14)

The error-to-signal ratio (ESR) can be expressed as (Billings, 2013; Billings et al., 1988),
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𝐸𝐸𝐸𝐸𝐸𝐸 = 1 −

𝑀𝑀
∑

𝑖𝑖=1

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 (15)

Based on Equation 15 it can be noted that terms in the NARX model with higher values of ERRi yields lower 
ESR. Hence, the terms with the highest ERRi need to be retained for the selected model. In general, the final 
NARX model constitutes of Mo terms such that ESR goes below a certain threshold ρ. The threshold in this study 
is chosen to be 0.01 (Billings, 2013; Billings et al., 1988). It can be noted that if all the terms were considered 
for model development, the developed model would be susceptible to overfitting. By selecting terms with a high 
Error Reduction Ratio ensures that the significant terms are retained, while discarding the terms with low ERRs 
based on an ESR threshold ensures that the model is parsimonious. A higher threshold value leads to fewer terms 
in the model, while in situations where all the possible terms are considered, the ESR would become zero. The 
model performance should be evaluated on the validation set alone to ensure that the model is not overfitted. In 
situations where the model performance is poor in the calibration set, it might indicate that the developed model 
is under fitted and a lower ESR threshold is needed, while if the model performance is accurate in the calibration 
set but poor in the validation set, the developed model might be overfitted and higher ESR threshold may improve 
the overall model performance.

2.2. Support Vector Regression (SVR)

The SVR develops a relationship (Vapnik,  2013) between an input vector (predictor) x(t)  =  [x1(t),…, xK(t)]  
∈ ℜ K, where K denotes the number of predictors, and output (predictand) y(t) ∈ ℜ   corresponding to time 
t = {1,2, …,  N}.

The relationship can be expressed as,

𝑦𝑦(𝑡𝑡) = 𝑓𝑓 (𝐱𝐱(𝑡𝑡)) + 𝑒𝑒(𝑡𝑡) (16)

where {f (⋅); ℜ K → ℜ} is a nonlinear transformation function (Vapnik, 2013), and e(t) is white noise whose 
expected value E[e (t)] is zero.

Consider the function ϕ (⋅) map x (t) at a higher p-dimensional space, where it is assumed that a linear relation-
ship exists between ϕ(x (t)) and y (t). The linear relationship can be expressed as,

[𝑦𝑦(𝑡𝑡)]1×1 = [𝜙𝜙(𝐱𝐱(𝑡𝑡))]1×𝑝𝑝[𝒘𝒘]𝑝𝑝×1 + [𝑏𝑏]1×1 (17)

the parameters [w]p×1 and b can be estimated by optimizing the following objective function,

(�, �) = min
�,�,�

[

1
2
��� + � 1

2

�
∑

�=1

(�(�))2
]

 (18)

where 

𝑒𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝜙𝜙(𝐱𝐱(𝑡𝑡))𝒘𝒘 − 𝑏𝑏 (19)

Minimization of the term 𝐴𝐴
1

2
𝒘𝒘

𝑇𝑇
𝒘𝒘 ensures that the model is not over-fitted, while minimization of the term 

𝐴𝐴 𝐴𝐴
1

2

∑𝑁𝑁

𝑡𝑡=1
(𝑒𝑒(𝑡𝑡))

2 ensures that the model prediction error is not significantly high.

The SVR model can be solved by using the Lagrange multipliers (Vapnik, 2013), where the future projections of 
the predictand y (tf) can be obtained as,

𝑦𝑦(𝑡𝑡𝑓𝑓 ) =

𝑁𝑁
∑

𝑡𝑡=1

𝛼𝛼𝑡𝑡𝐾𝐾(𝐱𝐱(𝑡𝑡), 𝐱𝐱(𝑡𝑡𝑓𝑓 )) + 𝑏𝑏 (20)

where x (tf) is the future projection of predictor vector corresponding to time tf and K (x (i),x (j)) = e −γx(i)−x(−j)2,γ > 0.  
Details of the SVR algorithm can be found in Vapnik (2013).
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2.3. Auto Regressive Model With Exogenous Variables (ARX)

The linear auto regressive model with one exogenous variable can be defined as,

𝑦𝑦(𝑡𝑡) + 𝑎𝑎1𝑦𝑦(𝑡𝑡 − 1) +⋯ + 𝑎𝑎𝑛𝑛𝑦𝑦𝑦𝑦(𝑡𝑡 − 𝑛𝑛𝑦𝑦) = 𝑏𝑏1𝑢𝑢(𝑡𝑡 − 1) +⋯ + 𝑏𝑏𝑛𝑛𝑢𝑢𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑢𝑢) + 𝑒𝑒(𝑡𝑡) (21)

Details on the solution of the ARX model can be found in Brockwell et al. (1991).

2.4. Performance Evaluation

The performance of each model has been evaluated in terms of five performance measures:

1.  Nash-Sutcliffe Efficiency (NSE):

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −

∑𝑇𝑇

𝑡𝑡=1
[�̂�𝑦(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)]

2

∑𝑇𝑇

𝑡𝑡=1
[𝑦𝑦(𝑡𝑡) − �̄�𝑦]

2
 (22)

where y (t) is the observed output variable at time t, 𝐴𝐴 𝐴𝐴𝐴 (t) is the model predicted value of the output variable at 
time t, T is the number of daily data points, and 𝐴𝐴 𝐴𝐴𝐴 =

∑𝑇𝑇

𝑡𝑡=1
𝐴𝐴(𝑡𝑡)∕𝑇𝑇  is the mean value of the observed output variable 

estimated over the total available records T.

 2. Pearson correlation coefficient (r):

���� =
�
∑�

�=1 �̂(�) × �(�) −
[

∑�
�=1 �̂(�)

]

×
[

∑�
�=1 �(�)

]

√

[

�
∑�

�=1 (�̂(�))
2 − (

∑�
�=1 �̂(�))

2]

×
[

�
∑�

�=1 (�(�))
2 − (

∑�
�=1 �(�))

2] (23)

 3. Kling-Gupta Efficiency (KGE):

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 −

√

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1)
2
+ (𝑎𝑎 − 1)

2
+ (𝑏𝑏 − 1)

2 (24)

where CORR is the Pearson correlation coefficient, 

𝑎𝑎 =

√

√

√

√

√

𝑇𝑇
∑𝑇𝑇

𝑡𝑡=1
(�̂�𝑦(𝑡𝑡))

2
− (

∑𝑇𝑇

𝑡𝑡=1
�̂�𝑦(𝑡𝑡))

2

𝑇𝑇
∑𝑇𝑇

𝑡𝑡=1
(𝑦𝑦(𝑡𝑡))

2
− (

∑𝑇𝑇

𝑡𝑡=1
𝑦𝑦(𝑡𝑡))

2
, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 =

√

√

√

√

∑𝑇𝑇

𝑡𝑡=1
�̂�𝑦(𝑡𝑡)

∑𝑇𝑇

𝑡𝑡=1
𝑦𝑦(𝑡𝑡)

 (25)

 4. Relative bias (Rbias):

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
1

𝑇𝑇

𝑇𝑇
∑

𝑡𝑡=1

�̂�𝑦(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)

𝑦𝑦(𝑡𝑡)
× 100 (26)

 5. Relative Root Mean Square Error (RRMSE):

����� =

√

√

√

√
1
�

�
∑

�=1

(

�̂(�) − �(�)
�(�)

)2

× 100 (27)

the value of NSE and KGE ranges from [−∞,1], r ranges from [−1,1], while Rbias ranges from [−∞,∞] and 
RRMSE ranges from [0,−∞]. The values of NSE, KGE and r tend to unity while values of Rbias and RRMSE 
tends to zero as model predictions become closer to the observed values.
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3. Methods—Flood Data
3.1. Catchment Description

The karst aquifer is in Carboniferous limestone bedrock in a lowland setting in the west of Ireland, situated 
less than 100 m above the current sea level (Drew, 2018). The area, a catchment of approximately 500 km 2 
receives allogenic runoff from about one-third of the catchment area from three main rivers draining the Old 
Red Sandstone Slieve Aughty mountains (see Figure 1). The lowland karst aquifer is fed by these sinking streams 
which disappear into underground fissures and conduits and then frequently reappear again in surface reaches or 
as turloughs in glacially formed depressions. The drainage takes the flows underground to the north-west to the 
Atlantic Ocean at Kinvara through a complex multi-level conduit system in this lowland network that has formed 
as a result of past glaciation cycles and their impact on karstification processes (Naughton et al., 2018).

The turloughs flood in winter providing temporary storage for huge volumes of water, forming a key component 
in the hydrogeological regime. They behave as surge tanks in the system, attenuating flow in the subterranean 
conduit network. In summer, however, these turloughs normally dry out. Turloughs are designated a Priority 
Habitat in Annex 1 of the European Habitats Directive (92/43/EEC) as they provide a habitat for many protected 
flora and fauna species. Equally, under the Water Framework Directive (2000/60/EC) turloughs are designated as 
groundwater dependent terrestrial ecosystems (GWDTEs).

3.2. Karst Network and Groundwater Flooding

3.2.1. Field Data

Continuous water level data at an hourly time scale were collected using pressure transducers with in-built data-
loggers at the base of five key turloughs (Blackrock, Coy, Coole, Garryland, and Caherglassaun) in the lowland 
karst catchment between 2007 and 2018. This was initiated by an integrated multi-disciplinary research interest 
in the ecohydrology of the ephemeral wetlands (Naughton et al., 2012; Porst et al., 2012; Waldren et al., 2015) 
and then a groundwater flood study (Morrisey et al., 2020).

Depth-area-volume relationships for the turloughs and linked floodplains were derived from LiDAR mapping 
data for the catchment in the form of a Digital Elevation Model (DEM) with a grid spacing of 2 m and a vertical 
accuracy of ±0.15 m. The depth-area-volume relationship was developed based on a third order polynomial to 
obtain optimal fit of the data. Where such data was not available, further topographical survey data was obtained 

Figure 1. Geology and relief map of study area showing five turloughs (•), the main rivers draining the Slieve Aughty 
mountains (gauging stations marked X) and the main spring at Kinvara (inset shows limestone geology of Ireland and 
location of study area) (Gill et al., 2013).
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from manual surveys carried out using a Trimble 4700 GPS system with a minimum accuracy of 0.01 m (hori-
zontal and vertical direction). These topographical data were combined with the available LiDAR data in ArcGIS 
and a new integrated DEM was constructed using the Kriging method with a 2 m grid spacing.

Rainfall data were collected from two tipping bucket rain gauges positioned at 70  m above ordnance datum 
(mAOD) and 150 mAOD in the catchment to assess the spatial distribution of rainfall. These data were then 
related to the Gort Derrybrien gauge operated by Met Eireann, which provided a longer data set, in order to fill 
missing gaps, albeit only at a daily frequency.

Tidal levels in Kinvara Bay (within Galway Bay) into which the system drains (i.e., the downstream boundary 
condition for the model), were obtained at 15-min intervals from the Marine Institute of Ireland's Galway Port 
tide gauge which is located c.15 km to the north.

The allogenic flows into the lowland karst network from the three main rivers draining off the Slieve Aughty hills 
were constantly gauged at locations on the edge of the sandstone before disappearing into the karst limestone via 
pressure transducers set into the bed of the rivers operated by the Office of Public Works (OPW). Rating curves 
(i.e., flow against stage relationship) were developed over time for each of the three gauging stations on the rivers 
flowing off the mountains.

3.2.2. Hydraulic Model Development

A semi-distributed 1D model of the catchment was developed in the Infoworks ICM (Innovyse) urban drainage 
software to simulate groundwater-surface water interaction for turloughs (see Morrisey et  al.,  2020 for more 
details) and more specifically for this study, to generate a complete time series of the flooded volume data as 
described in Section 3.2.3. This was based on a previous 1D semi-distributed model of the five turloughs due 
to its ability to model the hydraulics of the karst conduit network in both open channel and pressurized pipe 
flow (Gill, Naughton, & Johnston, 2013). The groundwater-surface water turlough dynamics were modeled as 
storage ponds in the software which were configured with the same depth-volume characteristics as the surface 
topography, as derived from the DEM. Diffuse recharge from rainfall is modeled per sub-catchment via a series 
of reservoirs: rainfall-runoff, soil, and groundwater stores in series, all yielding different delayed discharges in 
parallel into the pipe network. All flows discharge into permeable pipes, one connected for each sub-catchment to 
represent the primary and secondary permeability. The allogenic recharge into the karst network from the rivers 
was input as  point flow time series into the head of the pipe network. These data were derived by three separate 
rainfall-runoff models one for each river, using the MIKE11-NAM software (DHI Software). Certain key flood-
plains were also included as 2-D areas into the model to allow for overland flow between turloughs/floodplains 
which was not previously accounted for and therefore provided an accurate representation of flooding mecha-
nisms across the whole catchment. The final 1-D/2-D model network was developed on the back of previous 
field investigations (tracer studies, caving records etc.), with further insights into the system was gained from the 
accumulating hydro-meteorological data across the catchment as well as water hydrochemistry (Gill et al., 2018). 
Time and frequency series analyses on the continuous water level measurements of the five turloughs in the 
linked network were used in order to elucidate the nature of the hydraulic pipe configurations at key points in 
order to improve the conceptual model (Gill, Naughton, Johnston, Basu, & Gosh, 2013).

3.2.3. Data Used for Non-Linear Flood Forecasting Model Development

The Flooded Volume (FV) data from the five turloughs (Coole, Caherglassaun, Garryland, Blackrock, and Coy), 
collected between 1 June 2007 to 31 March 2018 were converted to a daily scale by cumulating the respective 
data. The Total Flooded Volume (TFV) was then obtained by cumulating the FV for each of the five turloughs. 
Three of the five turloughs (Coole, Caherglassaun, and Garryland) are located at a similar low elevation within 
7 km of the spring at the coast (with their bases between 0.9 and 1.8 mAOD); Blackrock and Coy turloughs are 
closely located at a more distant upper part of the catchment (within 12 km of the coast) with their bases between 
8.2 and 11.0 mAOD and receive more direct runoff from the rivers draining the Slieve Aughty mountains. The 
locations of the five turloughs are shown in Figure 1. Rainfall data, at an hourly timescale, were also converted to 
a daily scale by cumulating the respective data. Subsequently, the rainfall anomaly was estimated by substracting 
the long-term mean rainfall from daily rainfall values. The mean subtracted rainfall has been used in the paper for 
further analysis. The maximum difference in tidal amplitude per day was determined from the tidal data collected 
at 15 min intervals.
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4. Results
4.1. Karst System Groundwater Flooding Dynamics

The overall flooding dynamics of the lowland karst system between 2007 and 2018, as simulated using the 
Infoworks ICM hydraulic model, is shown in Figure 2. This shows the response of the total flooded volume in the 
catchments to rainfall, as well as the simulated final discharge from the spring out to Kinvara bay. In the northern 
temperate climate of Ireland, the seasons are defined as follows: Spring (March, April May), Summer (June, 
July, August). Autumn (September, October, November), Winter (December, January, February). The periodic 
fluctuations of the final spring discharge every day are caused by the impact of the tides on the outlet flows. The 
performance of the Infoworks model to predict the water levels in the individual five turloughs is shown in Figure 
S1 in Supporting Information S1, with NSEs and KGEs of >0.9 for all turloughs: a more extensive evaluation of 
the same hydraulic model over a longer time period can be found in Morrissey et al. (2020). Hence, whilst this 
semi-distributed model now works well to simulate the flooded volumes (and areas) of the catchment, it has taken 
several years to develop (requiring a lot of investigative studies to establish the network morphometry), requires 
detailed input data, and takes several days to run a simulation in 1D/2D and so would be impractical/unwieldy for 
use as a flood forecasting tool, particularly if developed from scratch every time.

This data was then used initially to define the nature of the relationship between the key variables: rainfall, TFV, 
and tidal amplitude, which has been used to develop the nonlinear time series and machine learning algorithms 
for forecasting groundwater flooding. These models are much quicker to run and easier to implement onto, for 
example, an online web portal using real-time water level, rainfall and tidal data which can run automatically 
without day-to-day additional desk-based processing requiring human input.

A system with a response function y (t) can be considered nonlinear (Billings and Voon, 1984) when the cross-cor-
relation function between y′ (t) and y′ (t) 2 for any lag τ are nonzero (Equation 28), where �′(�) = �(�) − �(�) .

Figure 2. Plot of total flooded volume at the study turloughs (Blackrock, Coy, Coole, Garryland and Caherglassaun) and 
simulated spring discharge at Kinvara over the karst model calibration period (2007–2018).
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��′ ,�′2 (�) =

∑�−�
�=1

[

�′(�) − �′(�)
]

×
[

(�′(� + �))2 − (�′(�))2
]

√

∑�
�=1

[

�′(�) − �′(�)
]

×
√

∑�
�=1

[

(�′(�))2 − (�′(�))2
] 

=

⎧

⎪

⎨

⎪

⎩

0, ∀𝜏𝜏 = 0, 1, 2,⋯ ⇒ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

≠ 0, ∀𝜏𝜏 = 0, 1, 2,⋯ ⇒ 𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 (28)

For large data (considerable high value of N), the 95% confidence interval 
can be chosen as ±1.96/N. The correlation function 𝐴𝐴 𝐴𝐴𝑦𝑦′𝑦𝑦′2 (𝜏𝜏) for the TFV up 
to 200 lags (Figure 3) indicates that the function does not converge to zero, 
indicating that the system generating the TFV is nonlinear.

The auto-correlation function of the TFV and the cross-correlation func-
tion between the TFV and the rainfall and tidal magnitude corresponding 
to different lags were estimated (Figure S2 in Supporting Information S1). 
The auto-correlation function of the TFV (Figure S2a in Supporting Informa-
tion S1) indicates that the function decays at a very slow rate, indicating that 
the TFV is a long-memory process. For practical purposes, the present day's 

TFV is assumed to be dependent on the past 5 day's TFV. A higher lag can lead to a complex model and might not 
be necessary. The cross-correlation function between the TFV and rainfall (Figure S2b in Supporting Informa-
tion S1) indicates that the correlation becomes insignificant after 17 days of lag. However, a threshold correlation 
value of 0.08 was considered as the minimum correlation between rainfall and TFV for the analysis, which leads 
to the selection of the rainfall lag up to the past 4 days. The cross-correlation function between TFV and tidal 
amplitude (Figure S2c in Supporting Information S1) was found to be insignificant. However, the tidal amplitude 
up to the past 4 days was also considered, similar to the rainfall. It needs to be noted that the auto- and cross-cor-
relation functions measure the linear dependence between two random variables. In situations where the system 
is nonlinear, a physical understanding of the system needs to be considered along with the correlation functions.

4.2. NARX Models With Either Rainfall or Both Rainfall and Tidal Amplitude as the Exogenous 
Variable(s) and Total Flooded Volume (TFV) as Endogenous/Output Variable

The daily TFV data were subdivided into two sets, the calibration set, and the validation set for modeling. Data 
ranging from 1 June 2007 to 1 January 2015 (2,772 days consisting of initial 70% data) was considered as the 
calibration set data, data ranging from 2 January 2015 to 31 January 2016 (395 days consisting of 10% data) was 
considered as the training set and were used for model development and model parameter estimation, while the 
remaining 20% data (790 days from 1 February 2016 to 31 March 2018) was used to evaluate the model perfor-
mance in terms of performance measures. It needs to be noted that the NARX model parameters are estimated 
based on the Error to Signal Ratio (ESR) value, and hence does not require the training set data. However, the 
training set data are necessary to identify the optimal model parameters of the SVR model.

Based on an understanding of the physical karst network and the autocorrelation function of TFV and the lagged 
cross-correlation function between TFV and rainfall, and TFV and tidal amplitude (see Section 4.1), the TFV for a 
given day was assumed to be dependent on the past TFV, the past and present day's rainfall and tidal amplitude. The 
TFV for a given day was considered to be dependent on the TFV of the previous 5 days from that day, and the rainfall 
and tidal amplitude of that day and the previous 4 days. The parameters in Equation 3 for the developed NARX model 
are: ny = 5;K = 2; d1 = d2 = 0; nu1 = nu2 = 5. The input/exogenous variable rainfall is denoted by u1 while the tidal 
amplitude is denoted by u2. Henceforth, the NARX model was indicated as NARX2 to reflect that two exogenous vari-
ables were considered to develop the nonlinear model. The total number of possible terms increases from 136 to 816 
when the degree of nonlinearity ℓ was increased from 2 to 3. Considering that 2,772 data points are available in this 
study to develop the model, the degree of nonlinearity was chosen to be 2. Furthermore, literature reveals that NARX 
models with a degree of nonlinearity equal to 2 usually have the potential to be sufficiently accurate (Billings, 2013). 
In situations where the performance of the developed model is poor, it would be necessary to develop a more complex 
model with a higher degree of nonlinearity or consider a rational or wavelet model instead of a polynomial model.

Figure 3. Nonlinearity detection function of total flooded volume.
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The developed NARX2 model can be expressed as:
�(�) = 1.7127 × �(� − 1) − 0.8462 × �(� − 2) + 0.3328 × �1(� − 1) + 0.0063

× �1(� − 2)2 + 0.3135 × �1(� − 2) + 0.0024 × �(� − 1) × �1(� − 1)

− 0.0021 × �(� − 4) × �1(� − 1) + 0.0243 × �(� − 5) + 0.2841

× �(� − 3) − 0.1800 × �(� − 4) + 0.0081 × �1(� − 1) × �1(� − 2)

+ 0.4860 + �(�)

 (29)

In situations where the tidal amplitude is not available or the turlough is located far from the ocean where the 
effect of the tide is not significant, the NARX model can be developed by using rainfall as the sole exogenous 
variable, termed as the NARX1 model.

To evaluate the performance of the NARX2 model using the performance measures, the developed model was used 
to predict TFV at different time periods in the future corresponding to the validation set and the model predictions 
were compared with the observed TFV. The projections were obtained for 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 45, 
60, and 90 days ahead. Three performance measures NSE, KGE and r were provided in Table 1 and the error in 
projected time series plots along with the observed time series are shown in Figure 4. The error is estimated as the 
difference between model predicted TFV from the observed TFV for the validation period. A positive error indicates 
that the model is overpredicting the TFV, whereas a negative value denotes the model underpredicts the TFV for the 
hosen day. Figure 5 provides the difference between the model predicted TFV and the observed TFV corresponding 
to the entire validation period in terms of boxplots. A positive (negative) error value indicates that the model is 
overpredicting (underpredicting) the TFV. It needs to be noted that the observed TFV during the validation period 
ranges from 1.007 × 10 6 to 1155.35 × 10 6 m 3 per day, with a mean TFV of 208.8 × 10 6 m 3 per day. Low observed 
values are susceptible to relative performance measures such as Rbias and RRMSE, hence those two measures 
were discarded while estimating the performance measure for the entire validation period. However, the primary 
objective of developing the model is to estimate its effectiveness in quantification and prediction of peak flows. The 
observed TFV in the validation period was found to be less than 10 × 10 6 m 3 per day for 151 days (19.1%), less than 
50 × 10 6 m 3 per day for 298 days (37.7%), with only 243 days (30.76%) exhibit TFV greater than the average TFV in 
the validation period. All of the five performance measures were estimated by considering those days in the valida-
tion period where the TFV was greater than 50 × 10 6 m 3 per day. The performance measures are provided in Table 2.

The robustness of the developed model (Equation 29) is investigated by performing an uncertainty analysis by 
perturbing the estimated model parameters. For this purpose, the lower and upper range of each of the 12 model 
parameters corresponding to 90% confidence interval (5% significance level on either side) were estimated. The 
values of the range of those model parameters are provided in Table S1 in Supporting Information S1. Subse-
quently, the lower and upper bound of each of the parameters has been used to develop the NARX model. The 
developed model can then be used to predict the TFV d-days ahead. It needs to be noted that in situations where 

Error Days 1 2 3 4 5 7 10 15 20 25 30 45 60 90

NSE NARX2 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.97 0.96 0.95 0.92 0.91 0.90

SVR 0.98 0.97 0.96 0.94 0.92 0.90 0.86 0.83 0.80 0.77 0.75 0.71 0.67 0.65

ARX 1.00 0.99 0.99 0.99 0.99 0.98 0.96 0.93 0.90 0.87 0.83 0.74 0.67 0.50

r NARX2 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.96 0.96

SVR 0.99 0.98 0.98 0.97 0.97 0.96 0.94 0.93 0.92 0.91 0.91 0.91 0.92 0.93

ARX 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.97 0.96 0.94 0.93 0.88 0.84 0.73

KGE NARX2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.95 0.93 0.89 0.85 0.81

SVR 0.96 0.95 0.93 0.91 0.88 0.84 0.79 0.75 0.71 0.68 0.65 0.59 0.54 0.50

ARX 0.99 0.98 0.98 0.98 0.97 0.97 0.96 0.93 0.91 0.90 0.88 0.86 0.83 0.72

Note. SVR, support vector regression; NARX, nonlinear auto regressive model with K exogenous variables; KGE, Kling-
Gupta efficiency; ARX, auto regressive model with exogenous variables; NSE, Nash-Sutcliffe efficiency.

Table 1 
Three Performance Evaluation Measures Nash-Sutcliffe Efficiency (NSE), Pearson Correlation Coefficient (r), and Kling-
Gupta Efficiency (KGE) in D-Days Ahead Prediction in the Validation Period, Where Values Denoted in Bold Denotes the 
Best Result Out of the Three Developed Models (NARX2, SVR and ARX)
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Figure 4. Observed time series of total flooded volume and error in model prediction, where a positive error indicate model is over-predicting and a negative error 
indicate under-predicting

Figure 4. (Continued)
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Figure 4. (Continued)

Figure 4. (Continued)
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lower and upper bounds of all of the 12 model parameters were considered, a total of 𝐴𝐴 212 = 4, 096 combinations 
of model parameters can be generated, leading to 4,096 models. However, it should be noted that the Error 
Reduction Ratio (ERR) is high for the initial set of parameters and reduces considerably for the other parameters. 
It has been noted that the ERR was found to be high for the initial 5 terms, hence lower and upper bounds of 
the first 5 parameters has been considered while the model predicted values of the remaining 7 parameters were 
chosen for the simulation study. Since lower and upper bounds of only 5 parameters were chosen, a total of 32 (2 5) 
parameter combinations and models were generated to perform the model parameter uncertainty analysis. Once 
the 32 models were generated, each of those models was used to simulate the d-day ahead TFV for the validation 
period. The developed time series was plotted along with the observed and model predicted TFV in Figure 6. The 
figure provides the range of expected error when the top 5 important parameters are allowed to have an estimation 
error corresponding to 10% significance level. The figure indicates that the range of error is very low up until 
10 days from which point the error starts to increase.

To understand the effectiveness of the nonlinear terms in model performance, a another NARX model has been 
developed where the degree of nonlinearity was chosen to be 1. This ensures that there are no nonlinear terms 

Figure 4. (Continued)

Figure 5. Boxplots of prediction error obtained using different models.
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in the developed model. The linearized NARX model with two exogenous variables is termed as LNARX2. The 
linear model can be expressed as,

�(�) = 1.7974 × �(� − 1) − 0.9496 × �(� − 2) + 0.4922 × �1(� − 2) + 0.1181 × �1(�)

+ 0.1189 × �2(�) + 0.0354 × �(� − 5) + 0.3153 × �(� − 3) − 0.2023

× �(� − 4) − 0.0275 × �1(� − 3) − 0.0213 × �1(� − 4) + 0.0760

× �2(� − 1) + �(�)

 (30)

Performance of the model has been provided in Tables S2 and S3 in Supporting Information S1 for comparison 
with the NARX2 model, while the errors are plotted in Figures S3 and S4 in Supporting Information S1.

4.3. SVR and ARX Models With Rainfall and Tidal Amplitude as Exogenous Variables

The machine learning based (SVR) nonlinear model was developed using the methodology described in 
Section  2.2. The modeling was performed by using the LS-SVMlab1.8 software package obtained from the 

Figure 5. (Continued)

Figure 5. (Continued)
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Error Days 1 2 3 4 5 7 10 15 20 25 30 45 60 90

NSE NARX2 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.91 0.90 0.88

SVR 0.97 0.96 0.94 0.92 0.90 0.86 0.82 0.76 0.72 0.69 0.66 0.61 0.56 0.52

ARX 1.00 0.99 0.99 0.99 0.98 0.97 0.95 0.92 0.88 0.84 0.80 0.72 0.67 0.57

r NARX2 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.97 0.97 0.96 0.96 0.96

SVR 0.98 0.98 0.97 0.96 0.95 0.94 0.92 0.90 0.89 0.88 0.88 0.89 0.90 0.91

ARX 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.96 0.95 0.93 0.92 0.88 0.85 0.78

KGE NARX2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.95 0.93 0.88 0.83 0.79

SVR 0.95 0.94 0.92 0.89 0.86 0.82 0.77 0.72 0.67 0.63 0.59 0.52 0.45 0.41

ARX 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.93 0.91 0.89 0.88 0.88 0.88 0.78

Rbias NARX2 0.62 0.85 1.16 1.44 1.81 2.60 3.38 4.54 4.96 4.42 3.91 3.90 1.85 0.34

SVR −0.98 −1.72 −2.58 −3.52 −4.50 −6.30 −8.63 −9.81 −9.77 −10.56 −12.02 −10.49 −12.52 −13.22

ARX 1.08 1.54 1.91 2.35 2.87 3.72 5.01 6.89 7.80 8.25 9.18 8.10 4.58 −1.23

RRMSE NARX2 8.69 10.30 12.44 14.99 17.59 22.68 28.21 36.63 44.67 50.34 54.52 65.36 63.70 62.92

SVR 16.93 20.80 25.28 30.29 35.02 41.90 49.84 58.07 65.30 70.82 73.42 79.61 80.20 80.63

ARX 11.91 15.68 18.35 20.90 23.50 29.06 36.47 49.46 60.69 69.79 78.34 99.57 109.30 113.25

Note. SVR, support vector regression; NARX, nonlinear auto regressive model with exogenous variables; KGE, Kling-Gupta efficiency; ARX, auto regressive model 
with exogenous variables; NSE, Nash-Sutcliffe efficiency; RRMSE, relative root mean square error.

Table 2 
Performance Measures NSE, r, KGE, Rbias and RRMSE in the Validation Period Excluding Days Where Observed Flows Were Less Than 50 × 10 6 m 3/Day

Figure 6. Range of d-days ahead total flooded volume projections based on the simulation study performed by considering the lower and upper bound of the most 
important five model parameters of (nonlinear auto regressive model with K exogenous variable 2 model.
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Figure 6. (Continued)

Figure 6. (Continued)
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following link: https://www.esat.kuleuven.be/sista/lssvmlab/. Since the 
parameters γ and C are not known a priori, the optimal value of those param-
eters is estimated based on a grid search procedure. In the process, several 
combinations of those parameters were considered and the SVR models were 
developed, and the performance of the SVR model in predicting the TFV for 
the training period was noted using NSE. The optimal parameters yield the 
highest NSE value. In the grid search process, γ was chosen as 0.001, 0.01, 
0.1, 1, 10, 100, 1,000, 10,000 and 100,000, while C was ranged from 1 to 100 
at an increment of 1. The optimal value of γ and C was found to be 10 and 7 
respectively. Subsequently, the developed SVR model was used to predict the 
TFV corresponding to the aforementioned 14 future time projections. The 
performance measures, predicted time series plots, and the errors in terms 
of boxplots are shown in Tables 1 and 2, Figures 4 and Figure 5 respectively.

Auto Regressive Model with Exogenous variables (ARX) model was devel-
oped using the procedures described in Section 2.4, while the modeling was 
performed by using the Time Series Analysis package available in MATLAB. 
The performance measures are shown in Tables 1 and 2 and Figures 3 and 4 
for conducting a comparative analysis between the linear, nonlinear and 
machine learning models in predicting TFV at turloughs.

Similarly, the LSTM has been developed based on the Deep Learning pack-
age available in MATLAB and as described in the Supplemental Information. 
Extensive model parameter search was performed by considering a range of 
values for hidden layers, gradient threshold, initial learn rate and learn rate 
drop factor using the training set data and the developed LSTM model was 
used to predict d-days ahead TFV for the validation period data. Further-
more, to compare the results of all those models, the basic linear auto-re-
gressive model with 1 parameter (AR1) has been developed. Performance 

measures of each of those models were compared in Tables S2 and S3 in Supporting Information S1, and by using 
Figures S3 and S4 in Supporting Information S1. It should be noted that the SVR and LSTM models consider the 
entire input database with all the chosen lags for their development. The ARX has the flexibility to develop the 
optimal model based on criteria such as AIC/BIC: AIC has been used while developing the ARX model in this 
study. The AR1 model has a sole model coefficient. Based on the results shown in Figures S3 and Tables S2 and 
S3 in Supporting Information S1, it can be noted that the performance of LSTM was considerably inferior when 
compared to the NARX, SVR and ARX models. Hence the LSTM model was not considered for further analysis.

4.4. Prediction of Occurrence of Peak Discharge Using NARX, SVR, and ARX Models

Along with the peak discharge, the time of occurrence of the peak is another important factor in the modeling. 
The error in predicting the peak time of occurrence for the predicted time series obtained using NARX2, SVR 
and ARX model corresponding to 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 45, 60, and 90 days ahead prediction was 
estimated. It has been noted that during the validation period, a total of 61 peaks had been identified from the 
observed TFV data. Considering a 7 days window, the difference of occurrence of peak TFV were estimated and 
the mean of absolute difference was calculated. The values are provided in Table 3. It can be noted from the table 
that the error in mean absolute difference increases with an increase in d-day ahead prediction. The nonlinear 
NARX2 model had an error ranging from 0.82 to 1.63 days. The SVR model had an error from 2.33 to 2.78 days, 
while that for ARX is 2.88–4.14 days. Based on the results it can be concluded that the NARX2 model is closest 
in predicting the occurrence of peak TFV.

4.5. Refined NARX Model at a Fine Spatial Scale and Different Lags

Based on the results obtained using the different models, it can be seen that NARX model provides the highest 
performances. This approach was therefore adopted to produce a refined model based upon two separate NARX 
models, one to predict the total flooded volume from the two turloughs located in the upper part of the karst 
network (Blackrock and Coy) and the other to predict total flooded volume from the three turloughs located at 

Days

NARX2 SVR ARX

12 terms NA 13 terms

1 0.82 2.37 2.93

2 1.37 2.39 2.88

3 1.41 2.61 3.33

4 1.63 2.49 3.60

5 1.61 2.67 4.09

7 1.56 2.67 4.05

10 1.39 2.65 3.47

15 1.47 2.55 4.02

20 1.58 2.78 3.81

25 1.63 2.75 4.00

30 1.63 2.53 3.81

45 1.54 2.69 3.67

60 1.61 2.35 4.14

90 1.63 2.33 4.02

Note. NARX, nonlinear auto regressive model with K exogenous variables; 
SVR, support vector regression; ARX, auto regressive model With exogenous.

Table 3 
Mean of Absolute Delay in Occurrence of Peak TFV Over a 7 Days 
Windows and the Number of Model Parameters in the Developed Model 
(NA: Not Applicable)

https://www.esat.kuleuven.be/sista/lssvmlab/
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a lower altitude (Coole, Garryland and Caherglassaun) which are influenced by both the rainfall and the tidal 
dynamics. Blackrock and Coy turloughs are located >12 km from the intertidal spring outfall in Kinvara bay and 
are at a higher elevation and it has been shown in previous investigations using Fast Fourier Transforms (Gill, 
Naughton, Johnston, Basu, & Gosh, 2013) that the tidal amplitude does not appear to have a significant effect on 
their FVs. Hence, a NARX1 model has been chosen for the upper turloughs with rainfall being the only exog-
enous variable, whereas a NARX2 model with rainfall and tidal amplitude as the two exogenous variables was 
chosen to predict the TFV for the other three lower turloughs located closer to the sea. Another phenomenon that 
needs to be investigated is the effect of maximum lags in days for both TFV and the exogenous variables. For this 
purpose, the values of ny as well as nu1 and nu2 (or nu1 alone) were varied from 1 to 5 days and the corresponding 
NARX models were developed. Since the NARX model does not require training set data for identification of 
optimal model parameters, and can be estimated solely based on the calibration set data using the Error to Signal 
Ratio (ESR), the entire data for both upper and lower karst regions were subdivided into two sets, the calibration 
set and validation set. The calibration set data ranged from 1 June 2007 to 17 July 2015 (2,969 days consisting 
of initial 75% data), while the remaining 25% data (988 days from 18 July 2015 to 31 March 2018) was used to 
evaluate the model performance as the validation set. The optimal maximum lags were identified based on the 
model performance by considering the entire validation set. The optimal maximum lags and the best model for 
the high-altitude turloughs were found to be ny = 2, nu = 3 and

�(�) = 1.6357 × �(� − 1) − 0.6494 × �(� − 2) + 0.0027 × �1(� − 2)2 + 0.1058

× �1(� − 1) + 0.0134 × �(� − 1) × �1(� − 2) + 0.0031 × �1(� − 1)

× �1(� − 2) + 0.0040 × �(� − 1) × �1(� − 1) + 0.0843 × �1(� − 2)

− 0.0127 × �(� − 2) × �1(� − 2) + 0.0011 × �1(� − 1)2 − 0.0019

× �(� − 2)2 − 0.0030 × �(� − 1)2 + 0.0049 × �(� − 1) × �(� − 2)

+ 0.0008 × �1(�)2 − 0.0020 × �1(�) × �1(� − 2) − 0.0031 × �(� − 2)

× �1(� − 1) + 0.1172 + 0.0010 × �(� − 2) × �1(�) − 0.0119 × �1(�)

+ 0.0009 × �1(�) × �1(� − 1) − 0.0008 × �(� − 1) × �1(�) + �(�)

 (31)

While for the lower altitude turloughs the optimal maximum lags were 𝐴𝐴 𝐴𝐴𝑦𝑦 = 4, 𝐴𝐴𝑢𝑢1 = 𝐴𝐴𝑢𝑢2 = 5 and,

�(�) = 1.5998 × �(� − 1) − 0.6861 × �(� − 2) + 0.1806 × �1(� − 1) + 0.2641

× �1(� − 2) − 0.1789 × �(� − 4) + 0.0003 × �(� − 1) × �1(� − 3)

+ 0.4976 + 0.0062 × �1(� − 1) × �1(� − 4) + 0.2597 × �(� − 3) + 0.0002

× �(� − 1) × �1(� − 4) + 0.0035 × �1(� − 1)2 + 0.0049 × �1(�)

× �1(� − 4) + 0.0543 × �1(� − 3) + 0.0050 × �1(�) × �2(�) + �(�)

 (32)

the TFV prediction error for each of those karst systems based on the identified NARX models were shown in 
Table 4, and the observed and NARX model predicted time series plots are shown in Figure 7.

4.6. Monte Carlo Simulation Study to Investigate Effectiveness of NARX Model

In order to investigate the effectiveness of the NARX model, a hypothetical simulation study has been consid-
ered. In the simulation study, a hypothetical rainfall-runoff process was generated. The rainfall-runoff relationship 
considered in the study was based on Soil Conservation Service (SCS) curve number, where the data was generated 
at a daily scale. The daily rainfall was assumed to follow the Pearson Type 3 (PE3) distribution (Ye et al., 2018). 
The reason for this simulation study is to investigate the effectiveness of a NARX model in the identification of the 
presence of nonlinear terms in a generic input-output system where the degree of nonlinearity present in the system 
is already known hypothetically. The generated rainfall data and the estimated runoff data were subdivided into two 
sets - the calibration set and the validation set. The rainfall and runoff from the calibration set were then used to 
develop the nonlinear time series model NARX, machine learning model SVR and linear time series model ARX. 
Subsequently, the generated rainfall in the validation set was used as an input to each of those three developed 
models and the runoff was generated for the entire duration of the validation period. The model predicted runoff 
were then compared to the actual runoff obtained based on the SCS curve number based approach and the errors 
in prediction were quantified in terms of the three performance measures: NSE, r, KGE.
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In order to generate the rainfall data, parameters of the PE3 distributions needed to be estimated. The PE3 distri-
bution consists of three parameters: location parameter (μ), scale parameter (σ) and shape parameter (γ). Assum-
ing γ > 0, the probability density function 𝐴𝐴 𝐴𝐴 (𝑥𝑥) can be expressed as,

𝑓𝑓 (𝑥𝑥) =
(𝑥𝑥 − 𝜉𝜉)

𝛼𝛼−1
𝑒𝑒
−(𝑥𝑥−𝜉𝜉)∕𝛽𝛽

𝛽𝛽𝛼𝛼Γ(𝛼𝛼)
 (33)

where 𝐴𝐴 𝐴𝐴 = 1∕𝛾𝛾2, 𝛽𝛽 =
1

2
𝜎𝜎|𝛾𝛾| and 𝜉𝜉 = 𝜇𝜇 − 2𝜎𝜎∕𝛾𝛾 .

The L-moments based parameter estimation (Basu & Srinivas, 2013; Hosking & Wallis, 1997) has been used in 
the simulation study to estimate the PE3 parameters. Based on historical observations (Ye et al., 2018), both the 
L-CV and L-skewness of the rainfall was assumed to be 0.5, while the mean was considered to be 1 inch. The 
three parameters can be estimated as (Hosking & Wallis, 1997): μ = 1, σ = 1.14997, γ = 3.07934.

Based on the estimated parameters, a rainfall time series of length 1,000 days have been generated (see Figure 8a).

Using the generated rainfall data, the runoff was estimated based on the SCS curve number approach. The SCS 
curve number assumes that the runoff Q  (inches) can be estimated from the precipitation P  (inches) as (Te 
Chow, 2010),

𝑄𝑄 =
(𝑃𝑃 − 0.2𝑆𝑆)

2

𝑃𝑃 + 0.8𝑆𝑆
 (34)

where S(inches) is the potential maximum retention after the beginning of runoff and is given as,

𝑆𝑆 =
1000

𝐶𝐶𝐶𝐶
− 10 (35)

CN is called curve number ranging from 0 < CN ≤ 100, with a completely impervious surface taking a value of 
100 and natural surfaces lower numbers. Based on empirical studies (Te Chow, 2010) the curve number depends 
on land use and soil type. The present simulation study assumes a cultivated land without conservation treatment 
and soil type C: clay loams, for which the CN = 88 (Te Chow, 2010; Table 5.5.2, page 150).

Predict

NARX1 (high-altitude turloughs) NARX2 (low-altitude turloughs)

NSE r KGE NSE r KGE

1day 0.997 0.999 0.998 0.999 0.999 0.999

2days 0.996 0.998 0.997 0.998 0.999 0.998

3days 0.994 0.997 0.996 0.998 0.999 0.998

4days 0.993 0.996 0.994 0.997 0.999 0.997

5days 0.991 0.995 0.993 0.996 0.998 0.996

7days 0.986 0.993 0.990 0.995 0.997 0.993

10days 0.980 0.990 0.987 0.992 0.996 0.988

15days 0.971 0.986 0.983 0.986 0.993 0.979

20days 0.965 0.983 0.980 0.981 0.991 0.970

25days 0.960 0.980 0.979 0.976 0.988 0.959

30days 0.955 0.978 0.976 0.972 0.986 0.949

45days 0.938 0.969 0.962 0.962 0.983 0.917

60days 0.932 0.966 0.947 0.957 0.982 0.888

90days 0.922 0.961 0.921 0.944 0.979 0.850

Note. NARX, nonlinear auto regressive model with K exogenous variables; NSE, Nash-Sutcliffe efficiency; KGE, Kling-
Gupta efficiency.

Table 4 
Prediction Error of Total Flooded Volume of the Turloughs Located in the Upper and Lower Part of the Karst Catchment
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The estimated runoff (in inches) using the SCS curve number and the simulated precipitation is shown in 
Figure 8b. It should be noted that the relationship between the runoff and precipitation is nonlinear in nature as 
per Equation 34.

The NARX model was developed by considering ny = 5; K = 1; l = 2; d1 = d2 = 0; nu1 = 5. The selected NARX 
model for the simulation study was as follows:

�(�) = 0.6149 × �1(�) + 0.3648 + 0.0400 × �1(�)2 − 0.0054 × �(� − 1) × �1(�)

− 0.0004 × �(� − 1) + �(�)
 (36)

It can be noted from the developed model that terms containing the current day's precipitation and the previous 
day's runoff got selected in the model. Furthermore, out of a possible 66 terms, only four most significant terms 
were selected in developing the NARX model which are: the present day's precipitation, the square of the pres-
ent day's precipitation, the past day's runoff and the product of present day's precipitation and past day's runoff. 
Investigation of the SCS curve number Equation 34 indicates that the runoff depends on the square of the present 
day's precipitation. Expansion of the SCS curve number equation in an algebraic form clearly indicate similarities 
in the model terms from both the equations.

Prediction of runoff using the NARX, machine learning based SVR and linear ARX models are provided in 
Figure 8c with the errors in runoff prediction using each of those models shown in Table 5. Since the runoff in 
the simulation study is low, the Bias and RMSE had been estimated instead of the Rbias and RRMSE. The error 
measures clearly indicate that the NARX model is superior when compared to the SVR and ARX models in 
predicting runoff for the validation period. Furthermore, it can be noted that the linear model predicts negative 

Figure 7. Nonlinear auto regressive model with K exogenous variable model predictions of the high-altitude and low-altitude turloughs corresponding to different time 
period ahead predictions.



Water Resources Research

BASU ET AL.

10.1029/2021WR029576

23 of 30

runoff for a considerable period of time and performs poorly. This is due to the fact that the true model used 
to generate the runoff data (SCS curve number) is nonlinear in nature. The SVR model provides considerable 
accuracy, as it can account for nonlinearity, however, the SVR model underpredicts the extreme events and over-
predicts the low runoffs.

5. Discussion
The comparison of the performance measures (Table  1) between the nonlinear, machine learning and linear 
time-series models based on the prediction of TFV from the five turloughs indicates that the performances of all 
of the models are all similarly highly accurate up to 1–10 days into the future. The three error measures NSE, r, 
and KGE indicate that the performance of NARX is better than the other two models. The NARX2 model consists 
of 12 important terms and require all past 5 days TFV, past 3 days rainfall and the present day's tidal amplitude 
data.

In general, an increase in rainfall increases the TFV in the turloughs, as expected. The performance of the 
NARX2 model was found to be very reliable in predicting TF volume and time of occurrences of peak flow with 
predictions up to 60 days ahead (Figures 3 and 4). The performance of each model, however, does deteriorate 
when predicting more than 30 days ahead. However, even though the models were unsuccessful in predicting the 
values of TFV beyond 30 days, the models still were able to identify successfully the time of occurrences of peak 
flows at later future dates within a range of 1.63 days (Table 3). Figure 4 further indicates that the error in model 
prediction is higher during high values of TFV when compared to low TFVs; however, the error obtained based 
on NARX2 model are the lowest.

Figure 7. (Continued)
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Figure 8. The (a) simulated daily rainfall time series using Pearson Type 3 distribution, (b) estimated runoff using SCS curve number based empirical rainfall-runoff 
model, and (c) comparison of estimated/true and predicted runoff using NARX, SVR and ARX models during the validation period in the Monte Carlo simulation 
based case study.
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One major advantage of the NARX models is that they can identify the 
important variables necessary to develop the relationship between the input 
variables (past TFV, current, and past rainfall and tidal amplitude) and the 
output variable (current TFV). The developed NARX2 model selected the 12 
most important terms out of a possible 136 terms. The flexibility in selecting 
such a limited number of terms allows the modeler to develop a nonlinear 
model that takes the form of an algebraic equation, as well as identifying the 
presence of redundant variables in the input data set. Hence, such a model 
is parsimonious and easy to use for obtaining future predictions. Further-
more, a well-developed NARX model can indirectly provide information on 
the complexity of the underlying physical phenomenon of the hydrological 
process. For example, in situations where a second-degree NARX model fails 
to provide sufficiently accurate predictions, but a third-degree NARX model 
can reach sufficient accuracy, that information can be used to understand 
and develop a physical or dynamical system model to represent the physical 
phenomenon of the system.

In the case of the machine-learning based (SVR) nonlinear model investigated, all the input variables with every 
past day's lagged data are used to develop the models. These types of models do not have the flexibility  to iden-
tify redundant terms that might be present in the database, nor can they be used to obtain information on the 
physical properties of the underlying system. The performance of the linear ARX model was found to be accurate 
up to 15 days, but then starts to deteriorate thereafter. Even though the turlough system is nonlinear in nature 
(Figure 3), the high performance of a linear model along with a sufficiently accurate performance of a second-de-
gree NARX model indicates that the complexity of the overall karst system in terms of the relationship between 
rainfall, surface flooded volume and tidal fluctuations can be assumed to be low.

Since the primary objective in development of the TFV model is to predict the peak flows with sufficient accu-
racy, five performance measures (NSE, r, KGE, Rbias and RRMSE) were estimated during the validation period 
by discarding the data corresponding to days where the observed TFV was less than 50 × 10 6 m 3 per day. It had 
been noted that the TFV was greater than the chosen threshold for 492 days out of 790 days in the validation 
period, and for 1,916 days out of 3,167 days in the combined calibration and training period. The NSE, r and 
KGE obtained using NARX2 model were found to be higher while estimating the peak flows when compared 
to that obtained based on SVR and ARX model, while the Rbias and RRMSE was found to be closer to zero for 
NARX2 model. The Rbias for SVR was found to be negative, indicating that the SVR model has, in general, a 
tendency to underpredict the TFV. Overall, it can be concluded that both linear and nonlinear times series models 
perform considerably better in predicting TFV up to 10 days into the future, whilst the proposed nonlinear time 
series NARX model performs better in predicting TFV from 15 days onwards. Based on the performance of the 
nonlinear and linear models from the real-world data and the Monte Carlo simulation studies, it can be noted that 
in situations where the degree of nonlinearity of the system is low, the performance of the linear and nonlinear 
models can be similar when only a few days ahead prediction is obtained, however, for highly nonlinear systems 
the linear model's performance will be considerably poor.

Identification of optimal lags for endogenous (TFV) as well as exogenous (rainfall, tidal amplitude) variables 
indicate that turloughs at different locations in the overall karst network can exhibit different optimal lags. The 
dynamics of the two turloughs located at the higher altitude require the past 2 days TFV and current and past 
2 days exogenous variable (rainfall) for an accurate model, whereas the three turloughs grouped further down 
the system need the past 4 days TFV, current and the past 4 days rainfall and the current day's tidal amplitude 
value. Hence, proper identification of the degree of nonlinearity, a set of exogenous variables, and their associated 
maximum lags are clearly important when developing accurate models for prediction.

These predictive models of TFV can be used to create a flood warning system in a real-world scenario. It should 
be noted that the model requires ongoing inputs of information on the rainfall and tidal amplitude data for fore-
casting TFV. In order to develop a useful early flood warning system for the lowland karst area, the refined NARX 
model (developed in Section 4.5) needs to be fed with real-time data, continuously updating the flooded volume 
of the catchment. In this catchment, depths are being monitored in real time at Blackrock and Coole turlough 
via pressure transducers recently installed by Geological Survey Ireland, which update data to a public site via 

Performance measure NARX SVR ARX

NSE 0.994 0.742 −1.050

r 0.997 0.952 −0.038

KGE 0.992 0.532 −0.509

Bias −0.38 −5.79 −52.11

RMSE 8.05 53.43 150.57

Note. NARX, nonlinear auto regressive model with K exogenous variables; 
SVR, support vector regression; ARX, auto regressive model with exogenous.

Table 5 
Performance Measures of Runoff Prediction Using NARX, SVR and ARX 
Model in the Monte Carlo Simulation Study
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telemetry every 15 min. Hence, the water level (stage) of Blackrock turlough located in the upper network and 
Coole turlough located in the lower part of the network have been related to the total flooded volume of the upper 
and lower altitude turloughs respectively. Since the goal is to focus on peak volumes and the corresponding water 
level, a TFV greater than 50 × 10 6 m 3 was used to develop the water level (Z) versus TFV relationship for both 
continuously monitored turloughs (Figure 9). The model can therefore be used to estimate the water level rise 
from the TFV into the future given different levels of future predicted rainfall as an early warning forecast system 
for the region. These rainfall projections can be made according to short-term weather forecasts. In situations 
where the forecasted water level is expected to rise above a certain threshold, necessary precautions can be taken. 
For example, if the water level reaches a critical threshold level at Blackrock and/or Coole turloughs on a given 
day, one can estimate the TFV for the past 2–4 days using the TFV versus water level relationship, while the past 
4 days rainfall and tidal amplitude data would also have been recorded. Based on the information, the amount of 
rainfall in the upcoming week that will create flooding by exceeding critical water levels in those turloughs can be 
simulated. In situations where the observed rainfall in this period is above such simulated rainfall values, a flood 

Figure 9. Total flooded volume versus water level (Z) relationship for (a) blackrock and (b) coole turloughs.
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warning can be issued. A recent flood study of the area (Morrissey et al., 2020) has defined the target maximum 
flood levels at Blackrock to be 27.1 mAOD and at Coole to be 13.35 mAOD. Hence, for an early warning system, 
it would be recommended that the model starts to be consulted on a daily basis when the levels get to 24.5 mAOD 
at Blackrock and/or 11.5 mAOD at Coole, and different forward projections can be applied.

In addition, the model can be used to quantify freshwater discharge into the Atlantic Ocean at Kinvara bay, which 
is not possible to measure directly as it is an inter-tidal spring. To do this the spring discharge (as simulated by 
the Infoworks model) was related with the TFV from the lower altitude set of turloughs, as shown in Figure 10. 
Again, TFV values greater than 50 × 10 6 m 3 were considered for the development of the relationship between the 
discharge Q (m 3/sec) into Kinvara bay and the TFV (m 3) from the three lower altitude turloughs (Coole, Garry-
land and Caherglassaun). Hence, for any value of existing or future predicted TFV, an equivalent spring discharge 
into Kinvara bay can be easily calculated according to that polynomial relationship. This could be of interest to 
mariculture farmers in the bay (mussels are harvested there) as well as more broadly for studies trying to assess, 
for example, the impact of terrestrial nutrients into the bay. Finally, in the future this type of approach could also 
be linked to regularly updated earth observation data, for example, using SAR satellite data to map the spatial 
extent of flooding, which can then be combined with the DEM to predict depth and volume.

6. Conclusions
This study has demonstrated the application of different nonlinear modeling approaches being able to capture the 
dynamics of a complex natural lowland karst system with frequent and widespread groundwater/surface water 
interactions and their development into an effective groundwater flood forecasting tool. For this karst system, a 
NARX model was deemed to provide the most reliable predictions up to 60 days into the future, beyond which the 
model's performances start to deteriorate, although it is still able to identify the timing of peak floods successfully 
up to 90 days in the future. The optimum NARX model requires inputs of the past 5 days' flood volume, and both 
daily rainfall data and tidal amplitude data across the past 4 days. Existing real-time telemetric monitoring of 
water level data, one situated in the upper part of the catchment, the other in the lower part of the catchment can 
be fed into the model to allow it to function as an early flood warning tool. The model also predicts freshwater 
discharge from the inter-tidal catchment outlet spring into the Atlantic Ocean.

The development of a NARX model to understand such complex and nonlinear natural systems is a challenge 
and needs to be explored in the future. However, this study has shown a potential application of this methodol-
ogy which can be extended to other locations, for example, modeling and prediction of spring discharges from 
karst systems or more broadly into other hydrological systems. The NARX model can be a viable alternative 
to other semi-distributed groundwater models, to make the relationships between key input variables easier to 

Figure 10. Relationship between the total flooded volume from the three lower altitude turloughs and the discharge at 
Kinvara bay to the ocean.
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 characterize. The NARX model is a statistical model generated solely based on the available historical data and 
hence the nonlinear framework can be applied to other natural systems (other than groundwater) as well. This 
approach also enables one to explore and identify the most important variables that influence the flood generation 
mechanism in a catchment, thereby helping to refine conceptual models of the natural systems.

Data Availability Statement
The data sets that were used to develop the models for this research can be found in Gill, L. (2021), “Lowland 
karst groundwater flooding data for forecast model,” Mendeley Data, V1, (doi:10.17632/s7jb2snd2j.1).
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