
1.  Introduction
Magnetic surveying provides a very effective window on the snow-, ice-, and seawater-covered crustal geol-
ogy of the Antarctic south of 60°S as generalized in Figures 1 and 2. Thus, to support these crustal studies, 
national geomagnetic survey campaigns were initiated with the 1957–1958 International Geophysical Year 
(IGY). However, they lacked international coordination so that tracking the survey coverages and progress was 
limited. This also made it difficult to appreciate the regional geologic settings of the surveys and plan for new 
ones. Accordingly, to better coordinate international geomagnetic surveying of the Antarctic and conserve the 
data for geological studies, the Antarctic Digital Magnetic Anomaly Project (ADMAP) was initiated in 1995 
following resolutions from the Scientific Committee on Antarctic Research (SCAR) and the International Asso-
ciation of Geomagnetism and Aeronomy (IAGA; Chiappini & von Frese, 1999; Chiappini et al., 1998; Johnson 
et al., 1997).

ADMAP released its first magnetic anomaly compilation, ADMAP-1, and near-surface anomaly grid (Figure 3) 
some 6 years after its launch (Golynsky et al., 2001). The compilation included more than 1.5 million line-km 
of ship and airborne magnetic measurements that were collected from the IGY’1957–1958 through 1999 along 
with some 5.6 million line-km of Magsat satellite crustal magnetic observations. Magsat data from the roughly 

Abstract  The Antarctic Digital Magnetic Anomaly Project’s first-generation magnetic anomaly map 
(ADMAP-1) was produced for the region south of 60°S from about 1.5 million line-kms of airborne and marine 
magnetic anomaly data (Golynsky et al., 2001; https://www.bas.ac.uk/data/our-data/maps/thematic-maps/
admap-magnetic-anomaly-map-of-the-antarctic/). The second-generation ADMAP-2 compilation (Golynsky 
et al., 2017; https://doi.org/10.22663/ADMAP.V2) incorporated an additional roughly 2.0 million line-kms 
of airborne and marine magnetic anomaly data from international mapping through 2015. The present study 
integrates satellite magnetic observations from the Swarm mission with the near-surface data of ADMAP-2 to 
help fill the regional coverage gaps and better define the altitude behavior of the Antarctic's magnetic anomalies 
for enhanced geological analysis. The resulting satellite magnetic data-supplemented compilation, ADMAP-2s, 
yields further constraints on the enigmatic geology of the Gamburtsev Subglacial Mountains, Prince Charles 
Mountains, Wilkes Land, Dronning Maud Land, and other poorly explored Antarctic areas. It offers insights on 
the global tectonic processes and crustal properties of the Antarctic and helps to unify disparate geologic and 
geophysical studies by linking widely separated outcrops. It also supports studies on the geological controls of 
the Antarctic ice sheet, the crustal transitions between Antarctica and the adjacent oceans, and the geodynamic 
evolution of the Gondwana and Rodinia supercontinents.

Plain Language Summary  This study integrates the second-generation magnetic anomaly 
compilation with Swarm satellite magnetic data to offer important new constraints on the geology of the 
Antarctic's crust that is largely hidden beneath a pervasive blanket of seawater, ice, and snow. The satellite 
data-supplemented magnetic anomaly compilation links widely separated outcrops to facilitate enhanced 
understanding of the lithospheric transition between Antarctica and its adjacent oceans, as well as the 
Antarctic's role in the tectonic evolution of the Gondwana and Rodinia supercontinents. The satellite data-
supplemented magnetic anomaly compilation in combination with complementary geological information, 
and ice-probing radar, gravity, and other geophysical data enhances understanding Antarctic crustal rifting, 
mountain building and basin formation, plate subduction and accretion, and other regional lithospheric 
processes.
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Key Points:
•	 �Swarm satellite magnetic gradient 

anomaly observations provide useful 
constraints to help fill regional 
coverage gaps in the more than 3.5 
million line-km of ship and airborne 
magnetic anomaly data of the 
ADMAP-2 compilation. They also 
substantially enhance Antarctic crustal 
studies of the near-surface magnetic 
survey data

•	 �Onshore, the ADMAP-2 anomalies 
over West Antarctica include the 
effects of extensive late Cenozoic 
volcanic rocks within the West 
Antarctic Rift System and Mesozoic 
arc magmatism and terrane accretion 
along the paleo-Pacific active margin 
of Gondwana. Over East Antarctica, 
they mark the Mawson Craton's 
southernmost boundary along 85.5°S 
between 157°E to 135°E to suggest 
that the Shackleton Ranges may not be 
part of the craton (Boger, 2011)

•	 �Offshore, the ADMAP-2s anomalies 
illuminate Antarctica's continent-
ocean transition zones. Satellite 
magnetic anomaly maxima also 
map enhanced crustal heat flow 
variations that yield relatively 
marginal signatures in the near-surface 
obserations
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half-year satellite mission provided unique regional crustal anomaly perspectives. They also facilitated predicting 
anomaly values within the large coverage gaps in the near-surface surveys by joint inversions of the satellite and 
surrounding near-surface magnetic observations (Kim et al., 2004). Follow-on efforts improved the gap estimates 
using the more accurate and comprehensive post-Magsat magnetic observations from the multi-year Ørsted and 
Champ satellite missions (Kim et al., 2007; von Frese et al., 2008).

In 2008, NOAA's National Centers for Environmental Information (https://www.ngdc.noaa.gov) archived the 
ADMAP-1 grids and supplemental near-surface survey data for public distribution. The Korea Polar Research 
Institute (http://admap.kopri.re.kr) also provides free public access to the Magsat-, Ørsted-, and Champ-aug-
mented grids along with the near-surface survey data.

ADMAP-1 also contributed Antarctic coverage for the World Digital Magnetic Anomaly Map (WDMAM; Maus 
et al., 2009). However, WDMAM incorporated only the shorter wavelength components of ADMAP-1 under 
the dubious proposition that the compilation's long-wavelength anomalies must conform with the near-surface 
predictions of the satellite magnetic observations. Specifically, WDMAM replaced the surveyed anomalies with 
wavelengths greater than about 400 km in the ADMAP-1 grid by the nonunique and poorly constrained anomaly 
estimates downward continued over several hundred kms from the orbital measurements.

However, von Frese et al. (2013) found that this substitution corrupted ADMAP-1's contributions to WDMAM's 
south polar predictions mainly because measurement and data processing errors substantially limit the near-sur-
face sensitivity of satellite anomaly observations. In general, by the equivalent source and non-uniqueness attrib-
utes of potential fields, the reliability of any magnetic model's anomaly prediction decreases with increasing 
distance from the constraining observations (e.g., Hinze et al., 2013). Thus, the veracity of near-surface anomaly 
predictions from satellite-only magnetic measurements is extremely limited (e.g., Kim & von Frese, 2017; von 
Frese et al., 2013).

Furthermore, the state-of-the-art data processing for both the first- and second-generation ADMAP near-surface 
anomaly grids revealed no significant long-wavelength errors. The data processing included extensive statisti-
cal and visual screening of the data inputs and outputs for errors at all spatial and temporal scales (Golynsky 
et al., 2001, 2017; Golynsky, Golynsky, & von Frese, 2021 in-review). Data were discarded only in the limited 
number of cases where they were irreconcilable. Thus, the data processing in both compilations incorporated 
nearly all of the available near-surface survey data for effective grid estimates of the long-wavelength anomaly 
components. Confidence in the gridded regional anomaly components is further bolstered by the general lack of 
reports to date from the public on significant data errors in either of the two published compilations.

In geological application, ADMAP-1 provided significant new constraints on the crustal attributes of south polar 
Proterozoic-Archean cratons, Proterozoic-Paleozoic orogens, and Phanerozoic magmatic arcs and rifts. It helped 
to map large igneous provinces like the Ferrar dolerites that extend hundreds of kilometers beyond their famous 
cliff exposures along the Transantarctic Mountains (TAM), and confined the Kirkpatrick basalts mostly to the 
Polar Plateau's edge in the central TAM and parts of Victoria Land (e.g., Ferraccioli et al., 2000, 2002, 2003, 2009; 
Finn et al., 1999; Studinger et al., 2003).

The release of the second-generation ADMAP-2 compilation in Figure  4 (Golynsky et  al.,  2017) revealed 
substantially expanded near-surface geomagnetic survey coverage, particularly in East Antarctica and its offshore 
areas. The production of this compilation involved processing more than 2 million line-km of new marine and 
airborne magnetic survey data that were then merged with ADMAP-1's roughly 1.5 million line-km of data. 
The datasets in the second-generation compilation provided further important details on the Antarctic's base-
ment terranes and the intervening suture zones, intra-continental and continental margin rift basins, and regional 
plutonic and volcanic features like the Ferrar dolerites and Kirkpatrick basalts (e.g., Aitken et al., 2016; Ferrac-
cioli & Bozzo, 2003; Ferraccioli et al., 2011; Golynsky, Golynsky, et al., 2006; Goodge & Finn, 2010; Mieth 
et al., 2014).

To enhance geological applications, the present study supplements the ADMAP-2 compilation with the magnetic 
gradient observations from the multi-year Swarm mission's constellation of three low-earth orbiting satellites 
(Haagmans et al., 2010). Accordingly, the next section develops the ADMAP-2s compilation where supplemen-
tal satellite magnetic data help fill the regional gaps in the near-surface survey coverage and establish boundary 
conditions to better image the spatial attributes of the anomalies from near-surface through satellite altitudes.
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2.  ADMAP-2s Data Processing
The coverage gaps between the near-surface surveys in Figure 4 are particularly extensive in East Antarctica and 
the Pacific area north of West Antarctica and the Ross Sea. However, potential field anomaly continuation is a 
boundary value problem so that weighted local measurements of both near-surface and satellite-altitude obser-
vations are effective for estimating gap-filling magnetic anomaly values (Kim et al., 2007). Accordingly, each 

Figure 1.  Shaded relief map of Antarctica's surface topography showing selected geographical and geological features described in this study. Blue patches highlight 
the distribution of the intensely negative near-surface magnetic anomalies that the text attributes to reversed natural remanent magnetizations of intrusive and volcanic 
rocks. The insert emphasizes their distribution over Victoria Land. Brown contours delineate outcrops, and green contours outline the subglacial Lake Vostok (LV) and 
Gamburtsev Mountains, as well as the Maud Rise and Kerguelen Plateau. The red circle locates the putative Wilkes Land impact basin, and Table 1 lists the geological 
and geographic name abbreviations.
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gap was filled in with the predictions from a local point dipole model constrained jointly by the satellite crustal 
magnetic anomaly estimates in Figure 5 from the Swarm mission (Olsen et al., 2017) and the near-surface anom-
aly observations around the gap's perimeter (Kim et al., 2004, 2007; Yu et al., 2019).

To facilitate spherical coordinate modeling efforts, the gap-filled ADMAP-2 grid of magnetic anomalies at the 
variable altitudes of the composite surveys (Golynsky et al., 2017) was differentially continued to the Earth's 
mean geocentric radius of 6,371.2 km using the CompuDrape extension from Geosoft's Oasis montaj geopo-
tential anomaly processing software (Paterson et al., 1990). Figure 6 gives the resulting differentially continued, 
gap-filled ADMAP-2 grid, where the gap-filling predictions require careful use because they are not unique and 
propagate data measurement and processing errors.

The gap-filled ADMAP-2 grid was then modeled by an array of equivalent point sources (EPS) with spherical 
coordinate magnetic effects (Asgharzadeh et al., 2008; Hinze et al., 2013; von Frese, 1998; von Frese et al., 1981) 
that also satisfied the Swarm magnetic anomalies as an orbital-altitude boundary condition. Here, the EPS inver-
sion of the near-surface and satellite data obtained least squares magnetic susceptibility estimates for the (97,052 
x 93,456)-array of point magnetic dipoles distributed over the study area in roughly 20-km intervals at the uniform 
depth of 30 km below the Earth's mean geocentric radius of 6,371.2 km. The resultant ADMAP-2s model honors 
the near-surface anomalies with the root-mean-squared difference of RMSD = 18.50 nT and correlation coeffi-
cient of CC = 0.970, and the satellite anomalies with the RMSD = 1.58 nT and CC = 0.967.

AI Adelaide island MN Manning Nunataks

AIS Amery Ice Shelf MO Mount Obruchev

AP Adare Peninsula MRL MacRobertson Land

AR Astrid Ridge MS Mirny Station

ARB Adélie Rift Block MzG Mertz Glacier

ASB Aurora Subglacial Basin NG Ninnis Glacier

ASE Amundsen Sea Embayment PCM Prince Charles Mountains

CC Clarie Coast PEL Princess Elizabeth Land

ChI Chugunov Island PIG Pine Island Glacier

CI Chick Island POC Prince Olav Coast

CIS Cook Ice Shelf QMC Queen Mary Coast

CM Clemence Massif RG Rennick Graben

DG Denman Glacier RI Rauer Islands

DP Daniel Peninsula RL Recovery Lakes

EWM Ellsworth-Whitmore Mountains RN Robertson Nunatak

HB Horn Bluff ScG Scott Glacier

HF Heimefrontfjella SFZ Spenser Fracture Zone

HM Hudson Mountains ShG Shirace Glacier

HN Haag Nunatak SOM South Orkney Microcontinent

HP Hallett Peninsula SR Shackleton Range

HUS H.U. Sverdrupfjella TG Totten Glacier

LD Low Dome TI Thurston Island

LG Lambert Glacier VH Vestfold Hills

LHB Lützow-Holm Bay WARS West Antarctic Rift System

LV Lake Vostok WM Wohltat Massif

McM McMurdo WSB Wilkes Subglacial Basin

MG Matusevich glacier YBM Yamato-Belgica Mountains

Table 1 
Antarctic Geologic and Geographic Abbreviations in Figures 1 and 2
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Thus, the ADMAP-2s compilation provides improved perspectives on how the crustal magnetic anomalies may 
vary over the intervening altitudes that simply are not available from standard downward or upward continua-
tions of the individual datasets. Consider, for example, estimating at Swarm's approximate resolution limit of 
about 250 km the regional anomalies in the gap-filled near-surface anomaly grid of Figure 7a from the down-
ward continued Swarm magnetic anomalies in Figure 7b. Here, both maps were low-pass filtered for 250+ km 
wavelengths to facilitate the comparison. However, the correlation coefficient between them of CC(A,B) = 0.64 
indicates that the Swarm mission captured slightly less than 41% of the regional near-surface surveyed anomalies 
with the differences given in Figure 7c.

Figure 2.  Crustal geology of the Antarctic south of 60°S inferred from outcrop, drilling, and geophysical observations as 
modified from Grikurov and Leychenkov (2012) and Zhang et al. (2020). Table 1 alphabetically lists the feature abbreviations 
and Table 2 describes the legend.
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Comparable unreliability issues accompany the upward continuations of the near-surface anomalies to satellite 
altitudes such as shown in Figure 7d, where the EPS continuation of the near-surface magnetic data in Figure 6 
attempts to predict the Swarm anomalies of Figure 7e. Here, the CC(C, D) = 0.45 suggests that the upward 
continued anomaly estimates capture only about 20% of Swarm's anomalies at the mission's average orbital 
altitude of 250 km above the Earth's mean geocentric radius with the differences given in Figure 7f. Clearly, 
substantial reliability limitations challenge uses of near-surface potential field variations inferred from satellite 
observations and vice versa.

However, as a boundary value problem, potential field anomaly continuation can be carried out with models that 
satisfy multi-altitude anomaly datasets (e.g., Hinze et al., 2013; Kim & von Frese, 2017; Kim et al., 2013; von 
Frese et al., 2013). For example, Figure 8 reveals perspectives on the Antarctic's total intensity magnetic field 
anomalies over geocentric altitudes ranging from 25 through 200 km via the EPS-model that largely accounts for 
both the near-surface and Swarm anomalies in Figures 7a and 7d, respectively.

These results provide insights into the altitude behavior of the crustal anomalies that simply are inaccessible to 
conventional single-surface upward continuations of the ADMAP-2 grid and downward continuations of the 
Swarm data. However, they lack uniqueness and can vary as new measurements are obtained. For example, actual 
surveying at 75 km altitude may map a flat and unvarying field of zero or some other constant amplitude in stark 
contrast to Figure 8c's predictions. The newly mapped data accordingly define a third boundary condition that 
may be integrated with the near-surface and Swarm boundary values by joint inversion for an EPS model, which 
now essentially satisfies the three boundary conditions with appropriately updated anomaly estimates at the inter-
vening altitudes. Clearly, the magnetic anomaly results from this study must be used with care because they are 
not unique and also propagate data measurement and processing errors. The next section considers some of their 
implications concerning the Antarctic's crustal geology.

Table 2 
Legend for Figure 2
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3.  Discussion
This section reviews the ADMAP-2s near-surface anomaly map (Figure 6) and its satellite-constrained predic-
tions with increasing altitudes (Figure 8) for further insights on the plate tectonic processes and crustal properties 
of the Antarctic south of 60°S. The magnetic anomaly compilation links widely separated outcrops to help draw 
together disparate geologic studies of the continental interior (Ferraccioli et al., 2009; Gohl et al., 2013; Golyn-
sky, 2007; Goodge & Finn, 2010; Jordan et al., 2014; Mieth & Jokat, 2014). Offshore, it illuminates Antarctica's 
continent-ocean transition zones. In general, ADMAP-2s provides the most comprehensive and powerful data set 

Figure 3.  The Antarctic Digital Magnetic Anomaly Project's first-generation map (ADMAP-1) of near-surface scalar total field magnetic anomalies in polar 
stereographic projection with central meridian = 0°E longitude and standard parallel = −71°S latitude (Golynsky et al., 2001). Generated from roughly 1.5 million 
line-km of airborne and shipborne magnetic observations, the 5-km grid of data at the variable altitudes of the composite surveys was low-pass filtered for about 
10+ km wavelengths.
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yet developed that together with the crustal geochronology and other geological constraints may help to refine 
Antarctica's tectonic evolution during the assembly and break-up of the Gondwana and Rodinia supercontinents 
(Aitken et al., 2014, 2016; Davey et al., 2016; Gohl et al., 2013; Granot et al., 2013; Jordan et al., 2017; König 

Figure 4.  The Antarctic Digital Magnetic Anomaly Project's second-generation map (ADMAP-2) of near-surface scalar total field magnetic anomalies in shaded relief 
on a polar stereographic projection with central meridian = 0°E longitude and standard parallel = −71°S latitude (Golynsky et al., 2017). Generated from roughly 3.5 
million line-km of airborne and shipborne magnetic observations, the 1.5-km grid of anomalies at the variable altitudes of the composite surveys was low-pass filtered 
for about 10+ km wavelengths. The four white ellipses in East Antarctica encompass the intensely negative magnetic anomalies discussed in the text. Anomaly and 
geographic name abbreviations include: ACMMA – Antarctic Continental Margin Magnetic Anomaly; EBA – Enderby Basin Anomaly; FMA – Forster Magnetic 
Anomaly; GP – Grunehogna Province; HLMA - Heimefront Lineament Magnetic Anomaly; MBMA – Maud Belt of Magnetic Anomalies; NC – Napier Complex; 
PMA – Pacific Margin Anomaly; RC – Ruker Complex; RMA – Ruker Magnetic Anomaly; RoMA – Robertson Magnetic Anomaly; TOAST – Tonian Oceanic Arc 
Superterrane; VCB – Valkyrie Cratonic Block. The bold white-filled diamond symbols mark the ‘centered roughly at’ (cra) coordinates for the applicable magnetic 
anomalies numerically annotated in the text and Figure 5.
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& Jokat, 2006; Leinweber & Jokat, 2012). The subsections below expand on the geological interpretations of the 
compilations from ADMAP-1 (Chiappini & von Frese, 1999; Ferraccioli et al., 2013; von Frese et al., 2002) and 
ADMAP-2 (Golynsky et al., 2017) to emphasize the geological utility of the ADMAP-2s compilation for West 
and East Antarctica and the Southern Ocean.

3.1.  West Antarctic Magnetic Anomalies

The ADMAP-2s near-surface grid (Figure 6) helps to delineate the distribution of West Antarctica's continental 
crustal terranes (Garrett et al., 1987; Golynsky & Aleshkova, 2000; Johnson, 1999; Maslanyj & Storey, 1990). 
These terranes include the Antarctic Peninsula, Ellsworth-Whitmore Mountains (EWM), the Filchner and Haag 
Nunataks, Marie Byrd Land, and Thurston Island (Ferraccioli et al., 2000, 2006; Golynsky & Aleshkova, 2000; 
Jordan et al., 2013; Luyendyk et al., 2003; Maslanyj et al., 1991). The thick sequences of Paleozoic sedimentary 
and metasedimentary rocks of the EWM are marked by a smooth magnetic anomaly field with superposed higher 
frequency anomaly maxima related to the Middle Jurassic plutonic complexes from the early break-up of Gond-
wana (Ferraccioli et al., 2000, 2006; Golynsky & Aleshkova, 2000; Jordan et al., 2013; Luyendyk et al., 2003; 

Figure 5.  Swarm total magnetic field anomaly estimates (Olsen et al., 2017) at the grid interval of 0.5° for the Antarctic 
crust south of 60°S at 250 km above the Earth's mean geocentric radius of 6,371.2 km. Superposed are relevant geological/
geographic features from Figure 1, and numbered bold white-filled diamond symbols that mark the 58 cra coordinates from 
Figure 4 as numerically annotated in the text.
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Maslanyj et al., 1991). The elevation variations of these anomalies inferred from the maps in Figure 8 suggest that 
this anomaly field persists up through Swarm altitudes with the short-wavelength components severely attenuated.

In contrast, intense relatively lower frequency anomaly maxima trending predominantly NW/SE characterize the 
area of the Haag Nunataks and their possible extension beneath the Ronne Ice Shelf, the EWM, and southern 
Palmer Land (Golynsky & Aleshkova, 2000; Maslanyj & Storey, 1990). However, Figure 8 shows that these 
anomalies are strongly suppressed at altitudes of about 75 km and higher, and thus poorly imaged by the Swarm 
mission data.

Figure 6.  The Antarctic Digital Magnetic Anomaly Project's second-generation satellite-data supplemented map (ADMAP-2s) of near-surface scalar total field 
magnetic anomalies derived from the gap-filled grid of Figure 4 differentially upward continued to the Earth's mean geocentric radius of 6,371.2 km. The bold white-
filled diamond symbols mark the cra coordinates from Figure 4 as numerically annotated in the text and Figure 5.
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Figure 7.  Total field magnetic anomaly comparisons of the Antarctic Digital Magnetic Anomaly Project-2s near-surface 
regional anomaly grid (Map A) with the downward continued Swarm magnetic anomaly estimates (Map B) at the Earth's 
mean geocentric radius of 6,371.2 km, and their (Map A – Map B) - differences (Map C), as well as the EPS upward 
continued ADMAP-2s near-surface anomalies (Map D) with Swarm's magnetic anomalies (Map E) at 250 km above the 
Earth's mean geocentric radius, and their (Map E – Map D) - differences (Map F). The correlation coefficients between the 
anomaly maps are also posted. The bold white-filled diamond symbols in the maps mark the cra coordinates from Figure 4 as 
numerically annotated in the text and Figure 5.
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The West Antarctic Rift System (WARS) forms one of the largest continental rift systems on Earth. It extends from 
the Amundsen Sea Embayment (ASE) along the eastern margin of the TAM to the Ross Sea. Here, widely spaced 
reconnaissance aeromagnetic profiles and detailed local surveys suggest the extensive presence of late Cenozoic 
volcanic rocks for the continental shelf and beneath the West Antarctic and Ross Sea Ice Sheets (Behrendt, 1964; 

Figure 8.  Antarctic scalar total field magnetic anomaly estimates over the geocentric altitudes of (a) 25 km, (b) 50 km, (c) 
75 km, (d) 100 km, (e) 150 km, and (f) 200 km above the Earth's mean radius of 6,371.2 km. The bold white-filled diamond 
symbols in the maps mark the cra coordinates from Figure 4 as numerically annotated in the text and Figure 5.
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Behrendt et al., 1996; Jankowski et al., 1983). The shallowly buried volcanic rocks yield numerous short-wave-
length, high-amplitude (100-to-1000+ nT) anomalies as the principal magnetic effect of the WARS. However, 
the 3-km Nyquist wavelength ADMAP-2 and -2s near-surface anomaly grids and their upward continuations 
represent this effect only marginally.

Much like the better-known Ross Sea segment of the WARS (Behrendt, 1999), both the Cretaceous rifting related 
to the separation of New Zealand from West Antarctica (Gohl et al., 2013) and the subsequent WARS-affiliated 
narrow-mode Cenozoic rifting (Bingham et al., 2012; Jordan et al., 2010; Smith et al., 2013) affected the ASE's 
development. Within the ASE, the cluster of positive aeromagnetic anomalies centered roughly at (cra) coordi-
nates [72.97°S, 113.64°W] suggests the presence of widespread Neogene igneous rocks between the outcrops of 
the Hudson Mountains and the deep interior of the Pine Island Glacier (PIG) catchment and Marie Byrd Land 
Dome. These rocks may be related to the narrow rift basins west of 98°W (Young et al., 2017), whereas further 
east, the anomalies suggest weakly magmatic WARS basins that may skirt the EWM.

In this study, the cra-coordinates are numbered according to the order in which they are called out in the text. 
Thus, cra1[72.97°S, 113.64°W] denotes the above first called out set of cra coordinates, which a bold solid white 
diamond symbol also marks in Figure 4 and other magnetic anomaly maps. Figure 5 also enumerates the bold 
solid white diamond symbols for all 58 cra-coordinates called out in the text.

The prominent regionally positive N/S-trending magnetic anomaly belt cra2 [77.43°S, 98.77°W] in Figure  4 
presumably relates to the enhanced magmatism during Cretaceous New Zealand–Antarctic rifting and breakup at 
ca. 90 Ma (Gohl et al., 2013) or the possible development of one or more narrow rift-basins along the edge of the 
EWM (Bingham et al., 2012; Jordan et al., 2010; Smith et al., 2013). The origins of the less distinct, weaker more 
curvilinear and broken up western anomaly belt cra3 [78.84°S, 132.13°W] are not well understood. However, it 
may reflect the effects of pre-breakup arc-related magmatism, or perhaps the break-up events involving the Cain-
ozoic magmatism from the mantle plume beneath the Marie Byrd Land dome. The western belt along roughly 
135°W bisects the dome where the underlying mantle plume may be driving ongoing alkalic vulcanism (e.g., 
Mukasa & Dalziel, 2000).

Continental rifting and magmatic processes presumably elevated heat flow at both local and regional scales, 
thereby increasing the availability of water at the base of the ice sheet. The aeromagnetic data reveal subgla-
cial sedimentary basins in the ASE that may have further enhanced glacial flow (Bingham et al., 2012; Jordan 
et al., 2010; Smith et al., 2013).

North of the WARS, the new Antarctic Peninsula aeromagnetic data are helping to decipher Mesozoic arc magma-
tism and crustal terrane accretion along Gondwana's paleo-Pacific active margin (Ferraccioli et al., 2006; Ghidella 
et al., 2013; Gohl et al., 2013; Jordan et al., 2014). These studies suggest that a 1,500+ km shear zone running 
along the Antarctic Peninsula batholith may mark the collisional suture between a seaward mafic arc and a land-
ward felsic arc at the active margin during the Cretaceous Palmer Land event (Ferraccioli et al., 2006; Vaughan 
et al., 2012). Accordingly, this event saw intrusions of highly magnetic tonalitic/granodioritic island arc plutons 
in the crust, in contrast to long-lived in situ magmatism that offers an alternate interpretation (Burton-Johnson & 
Riley, 2015). West of the Antarctic Peninsula across Adelaide Island (AI), high resolution aeromagnetic survey-
ing maps the extent of Cenozoic magmatism along the arc/forearc boundary. Here, about 25% of the upper crust 
consists of Paleogene and Neogene plutons to highlight the complexity and longevity of its magma emplacement. 
Accordingly, source interpretations vary for the prominent magnetic Pacific Margin Anomaly (PMA—Figure 4), 
which runs the length of the Antarctic Peninsula from Thurston Island to the South Orkney Microcontinent 
(Jordan et al., 2014; Maslanyj & Storey, 1990). However, the magnetic anomalies for the Antarctic Peninsula 
and South Orkney Microcontinent are well-defined up through Swarm altitudes to suggest regionally pervasive 
enhancement of the crust's magnetization.

Over the Möller and Institute ice streams, the new N/NW-trending positive aeromagnetic anomalies map out 
crustal features of the Weddell Sea Rift along the EWM's eastern margin. They include the effects of the rift's 
pre-existing Proterozoic basement and Middle Cambrian volcanic rocks, Jurassic intrusions, and the presumed 
post-Jurassic sedimentary rocks beneath the ice. The rift's kinematics suggest it formed between East and West 
Antarctica along part of a major left-lateral strike slip fault (Jordan et al., 2013). This boundary appears not only 
to have focused emplacements of the Jurassic intrusions, but also may have accommodated the displacement of 
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the EWM southwards at the beginning of Gondwana's break-up. However, the related magnetic anomalies fade 
quickly with altitude and are poorly imaged by the Swarm data.

3.2.  East Antarctic Magnetic Anomalies

This section summarizes possible crustal geology-magnetic anomaly associations for several sectors that connect 
to cover East Antarctica. Each sector radiates from the South Pole over the broad longitude limits described 
below.

3.2.1.  Dronning Maud Land Sector

This sector of western East Antarctica extending to roughly 40°E includes a well-defined E/W band of the 
near-surface magnetic anomalies in western Dronning Maud Land (DML) that may mark the East Antarctic 
Shield’s margin (Golynsky & Aleshkova, 2000; Riedel et al., 2013). The broad low-gradient magnetic minimum 
interspersed with linear weak magnetic anomaly maxima delineates the extent of the Archean-to-Mid-Proterozoic 
Grunehogna Province (GP in Figure 4) as a likely fragment of Africa's Zimbabwe-Kaapvaal Craton (Groenewald 
et al., 1991). The ca. 1.1 Ga magmatic rocks of the Namaqua-Natal-Maud Belt (or Maudheim Province; Groe-
newald et al., 1991) that rims the craton's fragment are marked by elongated, high-amplitude positive magnetic 
anomalies. The anomaly features for both the Grunehogna and Maudheim Provinces broadly transform with 
altitude into a regional anomaly minimum surrounded by a ring of maxima, which to the west along the coastline 
represent a prominent segment of the Maud Belt (Figure 8).

Within the western Maud belt of magnetic anomalies (MBMA in Figure 4), the Heimefront lineament magnetic 
anomaly (HLMA in Figure 4) is a major magnetic discontinuity that overlies the Heimefront Shear Zone, which 
may control the magnetic contrasts more structurally than lithologically (Golynsky & Jacobs, 2001). Northwest 
of the HLMA, broad, elongate, and high amplitude positive anomalies may map the edge of the Grenvillian 
cratonic rim. Southeast of the HLMA, the Grenvillian crust exhibits a broad magnetic minimum cra4 [74.82°S, 
10.34°W], which is overprinted by smaller anomalies trending mostly NW along the Pan-African structural trend 
identified for the Sivorg Terrane of the Heimefrontfjella (HF; Jacobs et al., 1996). Thus, the HLMA may deline-
ate a crustal-scale feature separating overprinted Mesoproterozoic Pan-African crust in the east from Pan-African 
crust in the west (Jacobs et al., 1996). Specifically, it may mark the East African-Antarctic orogen's western front 
that is broadly contemporaneous with and structurally orthogonal to the Ross Orogen in the TAM (Kleinschmidt 
& Buggisch, 1994; Tessensohn, 1997). Further northeastwards at the Midbresrabben Hills, a network of some 
400-m wide anastomosing mylonitic shear and cataclastic zones cut across banded gneisses like those of the H.U. 
Sverdrupfjella (HUS)'s basement (Grantham & Hunter, 1991). Accordingly, the Heimefront Shear Zone appears 
to be a major crustal-scale structure that continues for at least another 250 km as the western boundary of the East 
African–Antarctic Orogen (Jacobs & Thomas, 2004).

The MBMA's southern boundary lacks outcrop constraints, but south of HF, the aeromagnetic data transition 
from a series of moderate amplitude elongate minima and maxima into sharply contrasting, isolated shorter 
wavelength anomalies over the Coats Land Block (CLB; Golynsky & Aleshkova, 2000; Mieth & Jokat, 2014). 
The buried basement of the CLB is possibly a sliver of Laurentia within Rodinia (Gose et  al., 1997; Loewy 
et al., 2011) resulting from Archean-to-early Mesoproterozoic tectonism (Golynsky & Aleshkova, 2000; Jacobs 
et al., 2003). Its dome-like morphology and magnetic anomalies portray it as perhaps a relatively stable Pre-Gren-
villian buttress against the deformation of the surrounding mobile belts, where thermotectonic events strongly 
altered and magnetically imprinted its basement rocks.

Positive anomalies in Figures 7a and 7b, and 8a-8c Figures 7a and 7b, and 8a-8c partially ring the CLB's regional 
anomaly minimum with a weakly defined eastern boundary. At the higher altitudes in Figures 8d–8f, however, 
the irregularly shaped anomaly minimum just west of the Shirace Glacier (ShG) with elements cra5 [76.72°S, 
10.51°W] and cra6 [70.88°S, 35.69°E] appears to map the extent of the Grenville collisional orogenesis during 
the late Neoproterozoic-to-Early Cambrian.

The southern margin of the CLB features an elongate regional maximum cra7 [79.67°S, 31.34°W] over the 
Shackleton Range crustal block (SRCB). Positive anomalies of amplitudes up to 500 nT characterize the SRCB 
in contrast to the CLB's relatively subdued magnetic signature (Golynsky & Aleshkova, 2000). Outcrop studies 
show that the SRCB consists of basement rocks from the Precambrian Stratton and Pioneers Groups which 
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underlie Neoproterozoic sedimentary rocks. The basement groups sustained strong thermotectonic overprinting 
at ca. 500 Ma and were thrust over the Paleoproterozoic Read basement that was not overprinted during the lower 
Paleozoic (Tessensohn, 1997).

In the Shackleton Range (SR), Neoproterozoic sedimentary rocks in association with ca. 500  Ma ophiolitic 
outcrops and high-pressure evidence for metamorphism up to eclogite facies (Schmadicke & Will, 2006) support 
the CLB-bounding presence of a late Neoproterozoic/early Paleozoic suture zone. Talarico et  al.  (1999) and 
Kleinschmidt et al. (2002) suggest the suture developed by closure of an ocean in sinistral transpression. The 
ocean, in turn, may have lain off the East African-Antarctic Orogen's eastern margin, or perhaps at the northern 
margin of the Mawson Continent (Will et al., 2010). Despite the presence in outcrop of ophiolite rocks with large 
magnetic susceptibilities (e.g., [59.0–350] × 10 −3 SI; Sergeyev et al., 1999), neither of the inferred continuations 
of the suture is marked by the continuation of the prominent magnetic anomalies. Instead, the continuous belt of 
E/W-trending, high-intensity magnetic anomalies cra8 [80.26°S, 8.95°E] extends from the SR into East Antarc-
tica for at least 500 km where the belt's orientation roughly changes to a N/S-trend in the Recovery Lakes (RL) 
region (Ferraccioli et al., 2016). Figure 8 illustrates the eastward continuity of the linear belt, although the Swarm 
observations do not appear to resolve the RL's N/S-trending component.

To the west, the SR's mostly E/W-trending magnetic maxima cra9 [79.39°S, 40.18°W] terminate at the margin 
of the Weddell Sea Embayment. Comparable linear magnetic maxima over the Haag Nunatak crustal block may 
be reconstructed into continuity with the SR anomalies by undoing Jurassic crustal extension in the embayment 
(Jordan et al., 2017). Accordingly, despite the presence and lack of Paleozoic sediments in the respective SR 
and Haag Nunataks outcrops, this reconstructed mobile belt may have been active from the Proterozoic to the 
early Paleozoic (Golynsky, 2007; Jordan et al., 2017). The SR's magnetic maxima appear to involve relatively 
superficial enhancements of crustal magnetization given that they attenuate quickly with altitude in the anomaly 
continuations of Figure 8.

The mountains of central DML are marked by a regional low-amplitude minimum cra10 [71.48°S, 6.88°E] 
interspersed with high-frequency maxima (Damaske, 1999; Golynsky et al., 2001; Mieth & Jokat, 2014; Riedel 
et al., 2013). By Figure 8, the minimum anomaly persists up through Swam altitudes, whereas the shorter wave-
length maxima reflect more superficial crustal magnetization effects that quickly attenuate with altitude. Most of 
the local maxima are associated with voluminous and mainly undeformed Pan-African post-tectonic granitoids. 
The coastal outcrops all indicate Grenville basement that suffered Pan-African reworking to varying degree 
(Jacobs et al., 1998; Shiraishi et al., 1994).

South of the DML mountains, a smooth low amplitude minimum anomaly province cra11 [73.01°S, 4.29°E] 
terminates the 400  km long and 65  km wide Forster Magnetic Anomaly (FMA in Figure  4). Consisting of 
segmented linear SW/NE-trending anomalies (Riedel et  al.,  2013), the FMA may mark the edge of a major 
tectonic block and/or a suture zone within the East African-Antarctic Orogen (Jacobs & Thomas, 2004; Riedel 
et al., 2013). However, the FMA is severely suppressed at the higher altitudes in Figure 8 so that its interpretation 
for the effects of a major crustal magnetization's edge and/or a suture zone seems dubious.

The FMA also may be an eastward continuation of a linear anomaly cra12 [74.83°S, 5.40°W] located south-
ward of the Grenvillian/Kibaran orogeny-affiliated Sverdrupfjella-Kirwanveggen Anomaly with elements cra13 
[73.68°S, 6.02°W] and cra14 [72.44°S, 0.14°E] (Golynsky & Aleshkova, 2000). The underlying crustal province 
may represent an older cratonic block or the southern foreland extension of the western Rayner Complex (Jacobs 
et al., 2015). The region SE of the FMA involves sinuous, SE-trending magnetic highs of moderate intensities 
(Mieth & Jokat, 2014). Complementary outcrop, geochronological, and geochemical data suggest that the anom-
aly maxima may reflect the effects of juvenile Tonian crust formed in oceanic accretionary settings. However, 
this Tonian Oceanic Arc Superterrane (TOAST) lacks strong metamorphic overprint and has minimal Rodinia 
affinity (Jacobs et al., 2015) and magnetic effects at Swarm altitudes (Figure 8).

In southern DML around the Valkyrie Dome ice feature, the new aeromagnetic data show a prominent curvilin-
ear belt of segmented positive magnetic anomalies (Forsberg et al., 2018; Mieth & Jokat, 2014). This anomaly 
belt with elements cra15 [75.67°S, 6.92°E] and cra16 [76.92°S, 3.33°W] may outline the Valkyrie Cratonic 
Block (VCB in Figure 4; Golynsky, 2007; Golynsky et al., 2018). In Figure 4, the VCB's northern and western 
boundaries appear to be outlined by narrow anomaly maxima, whereas broader, higher amplitude maxima mark 
its southern and eastern boundaries. ADMAP-2 and newer data (Ruppel et al., 2018) reveal the anomaly belt to 
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be relatively continuous and encompassing predominantly low-amplitude regional minima that may be affiliated 
with back-arc sedimentary basins sandwiched between the TOAST and the Valkyrie craton.

3.2.2.  Enderby Land-To-Princess Elizabeth Land Sector

This sector of East Antarctica from roughly 30°E to 90°E includes the Enderby Land, MacRobertson Land, 
Princess Elizabeth Land (PEL), and the Prince Charles and subglacial Gamburtsev Mountains. In Enderby Land, 
the roughly oval belt of anomaly maxima cra17 [67.50°S, 50.38°E] differentiates the Archean Napier Complex 
from the negative magnetic signature of the Mesoproterozoic Rayner Complex to the south that continues toward 
MacRobertson Land (ML; Golynsky, Morris, et  al.,  2002). This belt, together with the magnetic anomalies 
of the northern Prince Charles Mountains (PCM) and the neighboring eastern Lambert Rift shoulder (Ravich 
et al., 1985), runs from the Prince Olav Coast (POC) toward PEL to mark a wide continental-scale accretionary 
orogen (i.e., the Rayner continental arc). This feature is also partly preserved in India (Mezger & Cosca, 1999) 
and may date to ca. 990–920 Ma (Mikhalsky et al., 2015). However, in Figure 8, it quickly fades with altitude and 
thus is poorly resolved in the Swarm anomalies.

Also fading rapidly with altitude is the prominent positive 350-nT amplitude anomaly cra18 [69.03°S, 41.36°E] 
that marks the boundary between the Rayner Complex and the Lützow-Holm Bay Complex (LHBC) to the west 
(Golynsky et al., 1996; Nogi et al., 2013). The fragmented E/W-trending magnetic maxima and minima of the 
LHBC reflect the effects of rocks subjected to granulite facies metamorphism. The westward changing magnetic 
anomaly pattern persists up to Swarm altitudes in Figure 8 to mark the boundary between the LHBC and the 
neighboring Yamato-Belgica Complex (Golynsky et al., 1996).

Figure 9 exemplifies how the aeromagnetic anomalies for the PCM and surrounding areas may be used to infer 
a complex, but coherent first-order interpretation of the region's crustal geology and tectonic history (Golynsky, 
Golynsky, et al., 2006; Golynsky, Masolov, et al., 2006). Magnetic anomaly correlations with known geologic 
features and trends allow for regional-scale geological mapping of ice-covered regions and differentiating 
magnetic crustal subdivisions like the Vestfold [1a, 1b], Rayner [2], PEL [3], and Ruker [4] terranes. For exam-
ple, intense positive anomalies [1a, 1b] associated with Late Archean high-grade metamorphic rocks encompass 
the Vestfold Hills (VH) and Rauer Islands to suggest a crustal block marked by a regional oval anomaly maxi-
mum that persists up to Swarm altitudes in Figure 8. However, the predominantly NE-trending magnetic fabric 
of the northern PCM that can be traced to the Lambert Rift's eastern margin rapidly fades out with altitude in 
Figure 8. This fabric's minima correlate with the Athos supracrustals [2a] and its maxima mostly map the Beaver 
Complex's Porthos orthogneisses [2b] and charnockite-granulite terrane (Kamenev et al., 1993). Moderate ampli-
tude banded anomalies characterize the Mesoproterozoic Fisher Complex's [2 d] diverse juvenile volcanics from 
ca. 1,400–1,200 Ma (Mikhalsky et al., 2013), whereas the calc-alkaline components suggest an island arc setting 
(Mikhalsky et al., 1996).

A prominent linear system of alternating anomalies trending NE/SW at the Lambert Rift's eastern shoulder 
is associated with the predominantly orthogneissic Pickering Series [3] and paragneissic Manning Series [3a] 
(Golynsky & Golynsky, 2007; Laiba & Kudriavtsev, 2006). Figure 8 suggests that this anomaly trend is percep-
tible as linearly continuous minima up to about 75 km altitude. From the U-Pb zircon ages and chemical compo-
sitions, the rocks are essentially the same as those of the Beaver Complex (Mikhalsky et al., 2013), although the 
magnetic anomaly attributes for the two regions differ (Golynsky, Masolov, et al., 2006). The mafic granulites of 
the Manning Nunataks (MN) can be related to metamorphose island arc basalts, whereas the relationship of the 
felsic volcanic arc orthogneisses to subduction of oceanic crust remains enigmatic (Liu et al., 2014). Protolith 
ages range from ca. 1,347 to 1,020 Ma to suggest a long-lived site of crustal accretion for the Rayner continen-
tal arc. Thus, aeromagnetic surveying of PEL [3] has imaged a unique Stenian-aged accretional orogen in East 
Antarctica (Liu et al., 2016; Mikhalsky et al., 2015). The orogen can be traced from the Clemence Massif in 
the central Lambert Glacier [LG] to the southern margin of the VH and further eastwards to 88°E (Golynsky 
et al., 2018).

Located largely over the eastern Amery Ice Shelf coast, the prominent Robertson Magnetic Anomaly (RoMA in 
Figure 4 & [3c] in Figure 9; Golynsky, Masolov, et al., 2006) seems to be suppressed at Swarm altitudes as shown 
in Figure 8. It appears to reflect the effects of amphibolite-facies rocks that only outcrop in the Robertson Nuna-
tak (RN) as migmatitic mafic schists and subordinate Bt-Pl orthogneiss (Laiba & Kudriavtsev, 2006; Mikhalsky 
et  al.,  2013). These isotopically juvenile rocks, together with those of the Fisher Terrane, may represent the 
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remnants of an oceanic arc that the Lambert Rift separates by some 50–60 km of dextral displacement. It may be 
attributed to oblique or strike-slip faulting during the opening of the rift, and thus may be related to the Mesozoic 
break-up of India and East Antarctica. Dextral strike-slip faults also dissect the Permo-Triassic Amery Group in 
the northern PCM (Boger & Wilson, 2003) and offset metamorphic isograds southwards by a few tens of kilom-
eters (Kamenev et al., 1993).

The Archean Ruker Complex (RC in Figure 4) of metamorphic rocks is mainly expressed by low-amplitude posi-
tive anomalies within a regional negative anomaly. The anomaly maxima reflect the effects of metamorphosed 
granite-gneiss basement rocks that experienced major early Precambrian (ca. 3,500–2,100 Ma) tectono-magma-
tism. Within the southern PCM, the Ruker Magnetic Anomaly (RMA in Figure 4 and [4] in Figure 9) is a prom-
inent magnetic lineament associated with a banded iron formation (Golynsky, Alyavdin, et al., 2002). Russian 
reconnaissance surveying has obtained evidence for possibly extending the RMA westward some 120 km (Golyn-
sky, Alyavdin, et  al.,  2002). However, in Figure  8, the RMA fades quickly with altitude, and thus is poorly 
resolved in the Swarm anomalies.

The elongate near-surface magnetic minimum cra19 [79.19°S, 74.91°E] appears to mark a major collisional 
suture that separates the Archean RC from the Proterozoic Gamburtsev Mountains Province (Ferraccioli 
et al., 2011). However, the timing of the final assembly of central East Antarctica along this and other sutures 
remains controversial due to the lack of outcrops. Using ADMAP-1 data, Golynsky (2007) offered an alternative 
by which the GMP may contain several sub-provinces where the suture possibly forms the southern boundary of a 

Figure 9.  Crustal magnetic anomalies of MacRobertson Land and Princess Elizabeth Land from Russian airborne surveys. White lines roughly delineate crustal 
subdivisions inferred from the first-order variations in anomaly amplitudes and gradients. The bottom-right insert generalizes the distribution of the subdivisions 
and the text gives additional information on their possible geological implications. Heavy blue and red lines delineate the Lambert and Gaussberg rifts (Golynsky & 
Golynsky, 2007), respectively. Lines of other colors infer faults, lineaments, and other structures. The blue asterisk at the upper right of the study region locates the 
Gaussberg volcano.
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Mesoproterozoic orogenic belt that encompasses the RC. The putative magnetic anomaly belt also may represent 
the extension of the TOAST that formed in central DML near the margin of the Rodinia supercontinent (Jacobs 
et al., 2015).

Prominent positive near-surface magnetic anomalies mark the Gamburtsev Mountains Province cra20 [81.14°S, 
73.04°E] that may form a continuous curvilinear belt with the SR maxima cra21 [80.43°S, 28.03°W], although 
the paucity of the available aeromagnetic data may somewhat limit the veracity of this association. In the Swarm 
observations, arcuate maxima mark the RC's northern and southern boundaries where isolated anomaly minima 
surround the relatively subdued central Mellor Anomaly (Golynsky, Alyavdin, et al., 2002) with positive elements 
cra22 [74.36°S, 57.81°E] and cra23 [75.06°S, 51.57°E].

3.2.3.  Queen Mary Land-To-Adélie Land Sector

This sector extends roughly from 90°E to roughly 145°E and covers Queen Mary Land, Lake Vostok, Wilkes 
Land, and Adélie Land. The near-surface grid coverage (Figure 4) for Wilks Land incorporates new aeromag-
netic data from the campaign abbreviated Investigating the Cryospheric Evolution of the Central Antarctic Plate 
(Blankenship et al., 2011). These data help to resolve Gondwana's crustal structures to constrain the Mesoprote-
rozoic reconstruction of Australia and Antarctica (Aitken et al., 2014, 2016). Southern Australia's crustal features 
that may extend beneath the East Antarctic Ice Sheet include the East and West Mawson cratons, the Charcot, 
Vestfold, Vostok and Gamburtsev-Ruker-PEL terranes, the Albany-Fraser Province, the Aurora, Conger, Frost, 
Scott and Totten transcontinental faults, as well as the Indo-Australo-Antarctic suture (IAAS) that arguably trends 
S/SE from Scott Glacier inland some 1,500 km or more (Aitken et al., 2014).

The IAAS is marked by the along-strike changes in aeromagnetic anomaly amplitudes, frequencies, patterns and 
other attributes that suggest its intersection with the coast near the Scott Glacier (≈100.5°E) and southward exten-
sion past Lake Vostok (Studinger et al., 2003). However, Gardner et al. (2015) argued that crustal rifting may have 
displaced the IAAS some 50 km westwards to near the Denman Glacier (∼99.5°E), whereas Maritati et al. (2016) 
suggested that the IAAS may also pass through Chugunov Island some 100 km off the coast.

To constrain the Indo-Australo-Antarctic boundary across Gondwana from NE India past Mirny Station into East 
Antarctica (Daczko et al., 2018), analyzed detrital zircons from offshore East Antarctica between 60°E and 130°E 
together with complementary terrestrial U-Pb geochronology and geophysical data (Mulder et al., 2019). They 
argued that the India-Australia paleo-plate boundary may intersect East Antarctica's coast near roughly 94°E as 
a subglacial fault, which Aitken et al. (2014) inferred from widely spaced ICECAP profiles and Daczko et al. 
(2018) called the Mirny Fault. However, new detailed bedrock topography and aeromagnetic anomaly data that 
Russian surveys collected recently east of the Mirny Station do not appear to observe this fault (Golynsky, Golyn-
sky, & Kiselev, 2021, in preparation) so that the crustal attributes of the IAAS remain enigmatic.

In general, the ICECAP aeromagnetic data-based elements of the near-surface anomaly grid may be broadly 
considered in terms of their features over central Wilkes Land between the Denman Glacier and the Clarie Coast 
(136.2°E), Adélie Land, Lake Vostok, and the Queen Mary Coast. Within central Wilkes Land, the magnetic 
province includes several linear anomaly belts that run roughly E/W over the Law Dome area and the nearby 
Totten Glacier axis cra24 [67.15°S, 115.27°E]. Further southwards, the curvilinear anomaly belts convex north-
wards, where the most intense anomaly maxima with amplitudes up to 1,500 nT overlie the Law Dome and 
neighboring areas. Also, the strongest negative anomaly here has an amplitude falling to −2150 nT. The anom-
aly belts may represent magnetic effects that are analogous to those of southwestern Australia's Albany Fraser 
Orogen (Aitken et  al.,  2014). In the southern reaches of these anomaly belts, Maritati et  al.  (2019) adjusted 
Aitken et al. (2014)'s ENE/WSW-trending aeromagnetic data lineament to intersect the coast in the vicinity of 
Chick Island cra25 [66.79°S, 121.0°E]. They inferred the modified magnetic lineament to mark the Southard 
Fault between their named Banzare and Nuyina crustal provinces that, in turn, may be the Antarctic conjugates 
of Australia's Coompana and Madura provinces, respectively.

Continuing south of the Totten Glacier, negative anomalies cra26 [68.74°S, 107.46°E], cra27 [68.77°S, 113.24°E], 
and cra28 [68.35°S, 120.32°E] predominate, where the belt's eastern part cra29 [68.16°S, 118.06°E] may involve 
the positive and negative magnetic effects of respectively uplifted and subsided crustal blocks. The width of this 
belt is about 140 km in its central and eastern parts, whereas it appears to die out to the west in the Aurora Subgla-
cial Basin area cra30 [68.11°S, 105.16°E]. Between the IAAS and Aurora fault, the near-surface magnetic anom-
alies of Aitken et al. (2014) change from roughly E/W to N/S trends due possibly to the overprinting effects of the 
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paired rift system underlying the Scott Glacier's southern extension and the Aurora Subglacial Basin, where Late 
Paleozoic–Triassic intracontinental extension produced the intervening highlands (Golynsky & Golynsky, 2012). 
Figure 8 shows that the related anomaly minimum is well-defined from near-surface through Swarm altitudes.

The Adélie Land's magnetic province is associated with Australia's Mawson Craton (Aitken et al., 2014; Fanning 
et al., 1995). It contains the Archean-to-Paleoproterozoic rocks that are also found along the George V coast 
which have geological affinities with the Gawler Craton's rocks in southern Australia. This province lacks 
magnetic profiles through its largest central part and thus is poorly surveyed. However, thin elongated anomalies 
with NNE/SSW trends map both the western and eastern margins of the Mawson Craton relatively well. The 
linear anomaly belts roughly terminate along 85.5°S between 157°E and 135°E to possibly delineate the Mawson 
Craton's southernmost boundary. Swarm anomaly maxima mark the eastern boundary of the Mawson Craton, but 
its western margin is relatively poorly defined in the satellite magnetic data.

In our near-surface anomaly grid, the Lake Vostok magnetic province does not appear to extend to the Knox 
rift cra31 [66.3°S, 100.0°E] as Aitken et al. (2014) proposed. This province contains mostly elongate positive 
anomalies of moderate amplitudes along the eastern coast and the southern end of Lake Vostok cra32 [75.6°S, 
106.0°E]. The Lake Vostok magnetic province generally shows low-amplitude short-wavelength anomalies in a 
negative regional background that seems to be poorly expressed in the Swarm data.

The Queen Mary Land magnetic province over the Charcot terrane west of the Denman Glacier area involves a 
sparse network of profiles (Aitken et al., 2014). The related poorly constrained components of the near-surface 
anomaly grid are dominated by low-amplitude, short-wavelength anomalies. However, this magnetic province is 
also poorly resolved in the Swarm data to suggest that it involves mostly superficial crustal magnetizations with 
effects that rapidly attenuate with increasing altitudes.

Northern Wilkes Land features numerous near-surface magnetic anomaly maxima that integrate with altitude 
in Figure 8 into the largest amplitude Swarm anomaly maximum of the Antarctic that the Magsat, Ørsted, and 
CHAMP satellite magnetometers have also mapped (von Frese et  al., 2013). They overlie crust that possibly 
extends into southcentral Australia, where the enhanced crustal magnetization may involve magmatic contri-
butions from giant meteorite impact in a normal-polarity geomagnetic field at ca. 260 Ma and the subsequent 
Mesoproterozoic rifting of Australia from East Antarctica (Kim & von Frese, 2017; von Frese et al., 2009; Zhang 
et al., 2020). The inferred impact also may have produced the putative 500-km diameter Wilkes Land subglacial 
meteorite basin cra33 [70°S, 120°E] in Figures 1 and 2, and triggered the end-of-Permian activation of the antip-
odal Siberian traps and the Earth's greatest mass extinction.

3.2.4.  George V Coast-To-Victoria Land Sector

This sector extends from roughly 145°E to the eastern margin of East Antarctica along the TAM. The near-surface 
grid coverage in Figure 4 also includes aeromagnetic data contributions from international surveys that jointly 
obtained sub-ice radar and aerogravity observations for the Wilkes Subglacial Basin (WSB) and TAM to help 
investigate the crustal architecture and geology at East Antarctica's eastern margin (Ferraccioli et al., 2009, 2017; 
Jordan et al., 2013; Studinger et al., 2004). For example, in Victoria Land aeromagnetic anomalies infer how 
Jurassic regional tholeiitic magmatism may have affected Palaeozoic terranes of the Ross-Delamerian orogen, 
which was subsequently dissected by faulting at the West Antarctic rift's shoulder.

They also constrain the transition between the Ross-aged terranes and the Precambrian interior of East Antarctica 
(Blankenship et al., 1993; Bosum et al., 1989; Damaske et al., 1994; Ferraccioli & Bozzo, 1999). For instance, 
strong aeromagnetic anomaly maxima (>500 nT) map the Cenozoic rift-related Meander Intrusives in the Malta 
Plateau (MP) region (Ferraccioli et al., 2009), whereas Jurassic-age Ferrar Group rocks are imaged in the Manning 
Nunataks (MN) region. Additionally, elongate short-wavelength magnetic maxima (100–200 nT) in the central 
TAM characterize the regional effects of Jurassic tholeiitic magmatism (Goodge & Finn, 2010) associated mostly 
with the Ferrar diabase dikes and sills. These features exhibit typical magnetic susceptibilities of about 8 × 10 −3 
SI or less as measured from outcrops throughout the TAM (Damaske & Finn, 1996; Ferraccioli & Bozzo, 1999; 
Goodge & Finn, 2010). In general, the near-surface anomalies fade rapidly with altitude, and thus are largely 
suppressed at Swarm altitudes.

Positive aeromagnetic anomalies over northern Victoria Land and southeastern Australia suggest that during the 
Ross-Delamerian orogeny, subduction-related plutons intruded the early Paleozoic margin of Gondwana (Finn 
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et al., 1999). These plutons in the respective conjugate Glenelg and Wilson terranes of Australia and Victoria 
Land may have formed magmatic arcs along the continental-margin. This magmatism's eastward migration culmi-
nated in the Stavely (Australia) and conjugate Bowers (northern Victoria Land) forearc vulcanism. The Stawell 
(Australia) and conjugate Robertson Bay (northern Victoria Land) turbidites from the respective Glenelg and 
Wilson terranes were deposited onto the subducting oceanic plate. During the Delamerian and Ross orogenies, 
thrust faults truncated and uplifted the margin (Finn et al., 1999). The regionally positive aeromagnetic anomalies 
marking possible Paleozoic plutons within Northern Victoria Land persist up to Swarm altitudes (Figure 8) to 
suggest their pervasive and/or deep-seated crustal origins.

Along the WSB's eastern margin, the NW/SE-trending, roughly 300  km long aeromagnetic anomaly maxi-
mum may reflect the magnetic effects of Ross-age magmatic arc intrusions (Ferraccioli et al., 2009). The broad 
magnetic low between 156°E and 150°E exhibits superposed short-wavelength maxima that are comparable to 
the superposed maxima of the dominant broad magnetic high between 150°E and 144°E. These high-frequency 
magnetic anomalies within the WSB that overlie mesa subglacial topography may delineate Ferrar tholeiite intru-
sions of the Beacon Supergroup rocks during the Jurassic (Ferraccioli et al., 2009).

Modeling of combined airborne magnetic and gravity data suggests that WSB's central basins may be underlain 
by post-Jurassic grabens. These grabens appear to be analogous to the Rennick Graben and its neighboring elon-
gate basins and the large fault-bounded troughs in Northern Victoria Land (Ferraccioli et al., 2009). The Matu-
sevich Glacier (MG), for example, appears to be underlain by the ca. 480 Ma Exiles Thrust Fault System, which 
was reactivated by Cenozoic strike-slip faulting into northern Victoria Land roughly along the MG (Ferraccioli 
et al., 2002, 2003). Further to the west, the Prince Albert Fault System appears to control the WSB's eastern 
elongate basins (Ferraccioli & Bozzo, 2003). The aeromagnetic effects of the WSB in Figure 8 fade quickly with 
altitude, and thus are poorly resolved by the Swarm data.

For the Cook ice stream (CIS) glacial catchment cra34 [69.45°S, 152.63°E], the overlying near-surface regional 
magnetic minima suggest that the near-coastal basins may hold several kilometers of early Cambrian-to-late 
Neoproterozoic (?) sediments, which abut Proterozoic inland basement marked by a prominent anomaly maxi-
mum cra35 [72.70°S, 155.67°E] (Ferraccioli et al., 2017). However, the alternate age of ca. 250 Ma also has been 
inferred for the sedimentary basins based on the Permian-to-Triassic sedimentary rocks intruded by the Ferrar 
tholeiites that crop out along the western Horn Bluff edge and the eastern edge of the Cook Ice Shelf at Mount 
Obruchev (MO; Mawson, 1940; Pavlov, 1958; Ravich et al., 1968).

The WSB's deep western basins, which provide strong topographic control on the Ninnis Glacier (NG), are 
marked by anomaly minima cra36 [68.74°S, 146.43°E]. These minima possibly map the Paleoproterozoic crustal 
boundary between an inferred Archean crustal ribbon or steep-sided shallow trough cra37 [67.08°S, 141.2°E] 
and the partially exposed Paleoproterozoic rift basins along the coast next to the Terre Adélie Craton (Ferraccioli 
et al., 2009).

The new survey data in Wilkes Land map a prominent 2,100 km-long elongate magnetic low with elements 
cra38 [68.51°S, 145.25°E], cra39 [74.76°S, 143.84°E], cra40 [78.56, 144.29°E], and cra41 [83.93°S, 146.82°E] 
that marks the Archean-to-Mesoproterozoic edge of the Mawson continent consisting of Australia's Gawler 
Craton (Payne et al., 2009) and East Antarctica's Terre Adélie Craton (Gapais et al., 2008). This N/S-trending 
magnetic lineament may image the Mertz Shear Zone from the South Pole toward the George V Coast. The shear 
zone underlies the Mertz Glacier (MzG) and may mark a lithospheric suture related to the collisional and trans-
pressional Paleoproterozic tectonics (Ferraccioli et al., 2017). In addition, the N/S-trending system of anomaly 
minima along roughly 145°E potentially indicates the effects of major rift-basins beneath the WSB, where Ross-
age terranes in Victoria Land and the TAM may transition into East Antarctica's Precambrian interior.

For the George V Coast, the roughly 100–300 km-diameter magnetic maxima cra42 [67.79°S, 147.24°E] and 
cra43 [71.62°S, 154.32°E] (Damaske et al., 2003; Ferraccioli et al., 2003) involve only sparse outcrop constraints 
of early Paleozoic plutons (Finn et al., 2006). Although these near-surface anomalies have been interpreted for 
the effects of igneous Precambrian or Jurassic rocks (Damaske et al., 2003; Talarico et al., 2001), they may also 
signal the presence of Paleozoic sources because they are similar to the magnetic signatures of the Australian 
and Antarctic Paleozoic plutons (Ferraccioli et al., 2002; Finn et al., 1999). Comparable wavelength and ampli-
tude magnetic maxima also have been inferred for the effects of early Paleozoic plutons in the TAM of southern 
Victoria Land (Bozzo et al., 1997; Ferraccioli & Bozzo, 1999; Ferraccioli et al., 2003). However, the magnetic 
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signatures of Paleozoic plutons are inconsistent across the TAM, where many granites exhibit marginally positive 
relative magnetizations (Damaske & Bosum, 1993; Ferraccioli et al., 2002) or even relatively negative magneti-
zations as found in the central TAM (Goodge et al., 2004). These anomalies are strongly suppressed at altitudes 
of 75 km and higher in Figure 8, and thus are poorly imaged by the Swarm mission data.

The white ellipses of Figure 4 include 56 strongly negative near-surface magnetic anomalies with amplitudes down 
to −2,650 nT. A few of these anomalies have been described in detail, including the one cra44 [71.34°S, 13.48°E] 
in central DML(Choi, 2005) and another cra45 [76.11°S, 130.2°E] over the WSB (Studinger et al., 2004). The 
first case was attributed to the effects of ca. 620 Ma Wohltat massif anorthosites, even though specimens with the 
corresponding magnetic remanence have not been observed (Paech & Marcinkowski, 2005). No source specula-
tions are available for the second case of the strongly negative anomaly over the WSB. The intense minima fade 
quickly with altitude in Figure 8 and appear to be irresolvable at Swarm altitudes.

In northern Victoria Land, the intense short-wavelength anomaly minima (e.g., cra46 [73.14°S, 165.53°E], cra47 
[72.69°S, 167.33°E], and cra48 [71.31°S, 170.20°E]) have been mostly attributed to the Late Cenozoic McMurdo 
volcanics or Meander intrusives that crop out over the Adare, Daniel, and Hallett peninsulas and in the Victory 
Mountains (LeMasurier,  1990; Tonarini et  al.,  1997). Although no outcrop observations of strong reversely 
magnetized rocks are available, the highly near-circular aeromagnetic anomalies commonly mark large alkaline 
intrusions (Armadillo et al., 2007; Bosum et al., 1989). These high-frequency minima also fade quickly with 
altitude in Figure 8 so that they are not resolved at Swarm altitudes.

South of Law Dome cra49 [66.73°S, 112.83°E] in Wilkes Land, eight intensely negative anomalies form a contin-
uous belt that is roughly 650 km in length. Aitken et  al.  (2014) grossly linked several of these minima with 
weakly magnetic intrusions of Australia's Albany-Fraser Province and their ‘West Mawson Craton.’ The anoma-
lies cra50 [67.06°S, 112.66°E], cra51 [66.60°S, 112.23°E], and cra52 [66.49°S, 113.56°E] over Law Dome may 
represent widely spaced components of a single anomaly cra53 [66.69°S, 112.76°E] covering an area of about 
9,500  km 2. Accordingly, this anomaly may map out another giant mafic/ultramafic intrusive complex of the 
Earth like Norway's Bjerkreim-Sokndal layered intrusion (McEnroe et al., 2001), the Coompana Block gabbro in 
Australia (Dutch et al., 2017), and the granitic-gneiss complex in the Adirondack Mountains of North America 
(McEnroe & Brown, 2000). The anomalies persist in Figure 8 up to about 100 km altitude, but quickly fade out 
at higher altitudes, and thus are poorly resolved by the Swarm anomalies.

Insights on the possible sources of Wilkes Land's intense anomaly minima may result from studying comparable 
anomalies of the conjugate Australian plate like the intense minima that characterize, for example, the Albany–
Fraser Orogen, Officer Basin, and Coompana Block (Milligan et al., 2010). A belt of some eight to 10 of these 
magnetic minima arcs along the western and southern Australian coast through the Officer Basin to the Musgrave 
Province to suggest a common underlying crustal origin for the anomalies. Boreholes targeting circular anomalies 
in the Coompana Block intersected mafic–ultramafic gabbro and dolerite intrusions at the approximate depth of 
300 m (Foss et al., 2016). However, for the Albany–Fraser Orogen, compositionally similar bodies may form part 
of the same intrusive suite, but at considerably greater depths of about 8–19 km.

The relative ages and contact relationships of the SW Australian intrusive bodies are constrained by the Coom-
pana Magnetic Anomaly (CMA), which was modeled as a multi-phase intrusive complex involving an initial 
deep crustal disk-like intrusion that subsequently developed pipe-like feeder intrusions in the upper crust (Wise 
et  al.,  2016). The intrusive complex's interpreted age is between ca. 1,120  Ma and 860  Ma. Furthermore, a 
Bouguer gravity anomaly minimum is coincident with the CMA minimum to suggest that the source body's 
density is somewhat less than that of the mafic-to-ultramafic or highly altered crust (Foss et al., 2016). These 
correlations, accordingly, may reflect the effects of a gigantic collapsed caldera or diatreme, or a Sudbury-like 
impact basin with post-impact magmatic intrusions in the basin's outer ring (Zengerer, 2017). Alternative inter-
pretations suggest that they may mark a crustal basin, an anorthosite complex, or some other low-density crustal 
feature carrying reversed remanent magnetization (Foss et al., 2018).

The intensely negative anomalies in southern Australia and Wilkes Land clearly involve enigmatic origins. 
However, the regional Coompana Province drilling program's results (Dutch et  al.,  2017) can help to reduce 
uncertainties of the anomaly inversions for their possible crustal magnetization attributes. The drilling program 
revealed a predominantly igneous history that possibly extends into the Neoproterozoic. The cored lithologies 
include deformed and migmatitic low magnetization and density orthogneisses, undeformed porphyritic granites 
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from a NE-trending band of highly magnetic plutons, and undeformed gabbronorites from remanently magnet-
ized, high-density late-stage intrusions. The CDP005 drillhole at the site of the strong reversely magnetized CMA 
intersected massive megacrystic granite, suggesting that the source of the large, reversely polarized CMA lies 
deeper than the basement's surface (Dutch et al., 2017).

3.3.  Southern Ocean Magnetic Anomalies

Figures 4 and 6 readily illustrate the magnetic anomaly contrast between continental and oceanic crust. Specifi-
cally, relatively complex magnetic anomaly patterns characterize the older and thicker recycled continental crust, 
whereas fairly uniform seafloor spreading anomaly patterns mark the newer and thinner oceanic crust. In the 
northern Weddell Sea, the pattern of NE/SW-striking seafloor spreading anomalies reflects mid-ocean ridge 
effects that accommodated the late Jurassic and Cretaceous motions of South America and Antarctica (Kovacs 
et al., 2002). In the central part of the Weddell Sea up through Swarm altitudes, linear magnetic anomaly maxima 
correspond to earlier phases (initial stages) of rifting between the South American and Antarctic plates. The 
northern Weddell Sea displays a linear minimum associated with later stages of rifting.

The aeromagnetic data from the Riiser-Larsen and eastern Weddell Seas tightly constrain the breakup of Gond-
wana (Jokat et al., 2003; König & Jokat, 2006). Oceanic crust started to form in the Riiser-Larsen Sea and conju-
gate Mozambique Basin at ca. 159 Ma. Further west, between ca. 146 and 143 Ma, break up was initiated by the 
development of a mid-ocean ridge that propagated eastwards through the eastern Weddell Sea at about 63 km/
Myr (Jokat et al., 2003; Leinweber & Jokat, 2012).

The more than 430,000 line-km of new airborne and marine magnetic survey data that were processed into the 
ADMAP-2 near-surface anomaly grid of Figure 4 greatly facilitate geologic investigations of East Antarctica's 
margin (e.g., Golynsky et al., 2013; Leinweber & Jokat, 2012). The new data help illuminate, for example, the 
tectonic and magmatic processes during the breakup of Africa, India, Australia and East Antarctica, and also 
highlight coverage gaps for the planning of future surveys. Over the Maud Rise and Kerguelen Plateau up through 
Swarm altitudes, pronounced magnetic anomaly maxima mark the possible effects of the extensive vulcanism 
from the related mantle hot spots.

The prominent curvilinear Antarctic Continental Margin Magnetic Anomaly (ACMMA) in Figures 4 and 6 skirts 
the coastlines of DML and Enderby Land and continues as far as the MzG in Adélie Land (Golynsky, Alyavdin, 
et al., 2002). The anomaly appears to represent continental breakup processes for perhaps the longest continuous 
tectonomagmatic feature in Antarctica. In the Cooperation Sea, the pronounced off-shore Enderby Basin Anom-
aly (EBA) extends roughly 1,680 km from the Kerguelen Plateau to the Cosmonaut Sea (Golynsky et al., 2007). 
The strong positive anomaly marks a basement rise with commensurate enhancements of crustal thickness and 
seismic velocity about 300 km seaward of East Antarctica's continental shelf (Stagg et al., 2005). The anomaly 
has been variously interpreted for the effects of a continent-ocean boundary, the continental remnants or scar of 
a propagating mid-ocean ridge, and the change in magma supply to a mid-ocean ridge (Davis et al., 2019; Gaina 
et al., 2007). Major elements of the ACMMA that are apparent in the Swarm observations include the Weddell 
Sea-to-Riiser Larsen Sea, the Cosmonaut Sea-and-western Cooperation Sea, and the Cooperation Sea-to-Maw-
son Sea segments. These segments accordingly may mark voluminous intrusions of the East Antarctic crustal 
margin during initial stages of Gondwana rifting. By Figure 8, however, the EBA is discernible only up to about 
75 km altitude, and thus is poorly mapped by Swarm's observations.

Magnetic anomalies of the Southern Ocean around East Antarctica significantly constrain the tectonic evolution 
of the seafloor (Golynsky et al., 2013). In particular, strong near-surface and satellite magnetic anomaly maxima 
overlie the southern margin of the Kerguelen Plateau, as well as the Maud Rise and neighboring Astrid Ridge. 
These maxima may reflect the effects of the basaltic veneers overlying stretched continental crustal fragments 
that are either separated from the Antarctic's continental margin (e.g., southern Kerguelen Plateau) or connected 
to it (e.g., Astrid Ridge). The anomaly maxima also mark thickened igneous crust formed within the oceanic 
basins (e.g., Maud Rise).

Prominent Swarm magnetic anomalies along the East Antarctic margin include the NE/SW-trending anomaly 
minimum cra54 [65.23°S, 23.43°E] over the Riiser Larsen Sea that possibly marks relatively thinned oceanic 
crust hosting thickened sedimentary deposits or another crustal demagnetizing effect (Figures 7a and 8). Further 
east, the western flank cra55 [64.20°S, 40.65°E] of the regional maximum in the Cosmonaut Sea overlies seafloor 
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spreading that developed during the stable Cretaceous Normal Superchron over the ca. 90–118 Ma period (Jokat 
et al., 2010). The enhanced magnetization effects of Kerguelen volcanism apparently are reflected by the elon-
gate maximum with elements cra56 [60.99°S, 71.70°E] and cra57 [61.92°S, 90.51°E] over the off-shore coastal 
Enderby Basin and the Davis Sea, respectively.

The magnetic data of the Enderby Basin (EBA) and the Shackleton Basin (SB) map at least 300 km of deposits 
from the Early Cretaceous Kerguelen Volcanic Province (Golynsky et al., 2013). Initiated in ca. 120–110 Ma 
(Frey et al., 2000), the massive hot spot vulcanism emplaced volcaniclastic material and lava flows onto both 
oceanic and continental crust. The magnetic effects of these volcanic rocks complicate interpreting the seafloor 
spreading anomalies and recognizing, for example, the central Enderby Basin's inactive spreading center (Golyn-
sky, et al., 2013; Stagg et al., 2005). Similar basaltic flows occur near the Astrid Rise in the Riiser-Larsen Sea 
(Leitchenkov et al., 2008), but their masking effects are less significant for clarifying the basin's seafloor spread-
ing anomalies M0-M24.

Off-shore of the Adélie Rift Block (ARB), the seafloor spreading history is poorly resolved (Colwell et al., 2006; 
Golynsky et  al.,  2013) and regional satellite and near-surface magnetic minima cover the Dumont d’Urville 
Sea into the Mawson Sea. The near-surface magnetic anomalies in combination with the continental lithologies 
dredged from the anomalously shallow bathymetry (Yuasa et al., 1997), and the complementary atypical free-air 
gravity anomaly minimum point to possibly hyperextended underlying Australian continental crust. Furthermore, 
the Spencer Fracture zone at the ARB's eastern edge may constitute the sheared margin of Gondwana that was 
conjugate to Australia's margin west of Tasmania.

The least-surveyed segment of the Southern Ocean lies off West Antarctica's Pacific margin. The Amundsen 
and eastern Ross Seas are particularly poorly sampled, even with the inclusion of the roughly 83,000 line-km of 
magnetic survey data collected during 1992–2007 (e.g., Cande et al., 1995). These data refine the early history 
of the diverging Bellingshausen and Pacific plates including the New Zealand-West Antarctica rifting, and the 
pre-spreading locations of the Campbell Plateau relative to the margins of Marie Byrd Land and the Ross Sea 
Embayment and their offshore pendants at Iselin Bank (Cande et al., 2000; Eagles et al., 2004; Wobbe et al., 2012).

The Swarm magnetic anomaly observations of Figure 5, by contrast, generally characterize the Bellingshausen 
Sea, Amundsen Sea, and the western Ross Sea sectors of the Pacific Ocean with broad relative minima. However, 
the strongly positive PMA in the near-surface grid is marked by prominent Swarm maxima along the West 
Antarctic Peninsula and Marie Byrd Land coastlines. The maxima extend further northwestwards across the Ross 
Sea to intersect the broad E/W-trending maximum with the eastern flank covering the Pacific-Antarctic Ridge 
system's younger elements (Müller et al., 2008). For the most part, oceanic crust with enhanced heat flow tends 
to exhibit both near-surface and satellite magnetic anomaly maxima.

In the off-shore Adare Basin (AB) of the northern Ross Sea, N/NW-trending aeromagnetic anomalies infer Ceno-
zoic seafloor spreading in the oceanic extension of the WARS from West Antarctica (Cande & Stock, 2006). 
Further details mapped by the high-quality aeromagnetic surveying include the transition between the WARS 
and the off-shore AB involving several Eocene-Oligocene rotations that constrain the relative crustal motions of 
East and West Antarctica (Damaske et al., 2007; Granot et al., 2013). The results infer the transition of seafloor 
spreading in the AB along WARS-strike to continental extension within the off-shore Victoria Land Basin that 
progressed further inland as a transcurrent plate margin (Davey et al., 2016; Granot et al., 2013). In the Swarm 
data, the WARS’ NE extension across the Ross Sea is marked by a prominent regional maximum that lies along 
the western boundary of the regional minimum over the Ross Ice Shelf and western Sea, TAM, and Victoria Land.

Off the Antarctic Peninsula's Pacific margin, downward continued anomalies from the ICEGRAV (Forsberg 
et al., 2018), USAC (LaBrecque et al., 1986), and Project Magnet (Hittlelman et al., 1996) aeromagnetic surveys 
significantly enhanced details of the seafloor spreading and fracture zone anomalies for further insights on the 
tectonic interactions of the Phoenix and West Antarctic plates (Eagles, 2004). However, these anomaly features 
appear to fade out quickly with altitude and thus are poorly resolved in the Swarm observations.

Over the broad continental shelf in the ASE, helicopter and shipborne magnetic surveys in 2006 and 2010 filled 
in the biggest coverage gap in the ADMAP-1 compilation and obtained significant new insights on the region's 
crustal structure and tectonic history (Gohl et al., 2013). These magnetic anomalies constrain the tectonic and 
magmatic products of long-lived crustal extension that multiple failed rifts accommodated. The magnetic data 
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clearly image a hinge zone cra58 [74.18°S, 117.65°W], where the basement rocks crop out south of it, and dive 
north of it beneath thick sedimentary cover.

The strongly positive near-surface PMA (Figure 4) complements the prominent Swarm maximum along the West 
Antarctic peninsula and Marie Byrd Land coastlines (Figure 8). The PMA appears to mark crustal fragments of 
West Antarctica's margin from the initial Cretaceous separation of New Zealand and West Antarctica.

4.  Conclusions
The ADMAP-2s compilation (Figures 6 and 8) is the most wide-ranging and self-consistent presentation to date 
of the Antarctic's crustal magnetic anomalies as surveyed since the IGY’1957–1958 by numerous international 
magnetic campaigns with disparate mapping parameters. The ADMAP-2s anomaly predictions are based on a 
spherical coordinate distribution of crustal magnetic point dipoles with magnetic volume susceptibilities least 
squares estimated from the joint inversion of the gap-filled ADMAP-2 anomalies at the Earth's mean geocentric 
radius of 6,371.2 km (Figure 6) and the satellite anomaly estimates from the Swarm mission at 250 km above 
the Earth's mean geocentric radius (Figure 5). Its magnetic anomalies from the near-surface to satellite altitudes 
reflect a detailed tapestry of crustal terranes defined by diverse lithologies, ages, thermal states, and metamorphic 
grades (e.g., Ferraccioli et al., 2011; Golynsky, 2007; McLean et al., 2009; Mieth & Jokat, 2014).

Offshore, for example, the ADMAP-2s model accommodates the 430,000 line-km of new airborne and ship 
survey data from the ADMAP-2 compilation that illuminate Antarctica's continent-ocean transition zones and 
significantly transform our view of the East Antarctic continental margins. The prominent near-surface Antarctic 
continental margin magnetic anomaly (ACMMA) may mark voluminous intrusions of the crustal margin during 
the initial stages of Gondwana rifting. However, its segments that extend from the Weddell Sea to Riiser Larsen 
Sea, the Cosmonaut Sea to the western Cooperation Sea, and the Cooperation Sea to the Mawson Sea involve 
magnetic effects which are also apparent in the Swarm observations. Additionally, Swarm magnetic anomaly 
maxima readily mark the ridges, plateaus, and other enhanced geothermal heat flow features of the oceanic crust. 
However, these maxima are effectively masked in the near-surface anomaly grid by the strong high-frequency 
effects of the marine crust that, in turn, are poorly mapped at satellite altitudes.

Inland, the ADMAP-2s compilation provides important new constraints on the enigmatic geology of the Gamburt-
sev Subglacial Mountains, Prince Charles Mountains, Wilkes Land, Dronning Maud Land, and other poorly 
explored Antarctic areas. It offers new insights on the Antarctic's crustal properties and effects of global tectonic 
processes. It also links widely separated outcrops to help unify disparate geologic and geophysical studies. For 
example, in PEL, aeromagnetic surveying imaged the Stenian-aged accretional orogen of a length that exceeds 
1,000 km. However, the disrupted crustal effects from the collision of the Indian and Asian tectonic plates may 
obscure the effects of its possible extension into neighboring Gondwanan India. On the other hand, marking the 
Mawson Craton's southern boundary along 85.5°S between 157°E and 135°E is consistent with well-defined 
magnetic anomaly maxima in both the near-surface and Swarm observations. Thus, the rocks exposed in the 
Shackleton Ranges may not be part of the Mawson Craton (Boger, 2011), even though they formed in the Late 
Paleoproterozoic orogenesis with Terre Adélie Land (Will et al., 2009). Also, within the East African-Antarctic 
Orogen, a major tectonic block's edge and/or a suture zone have/has been inferred from the near-surface FMA. 
However, the ADMAP-2s data suggest the Forster Magnetic Anomaly (FMA) is severely suppressed at higher 
altitudes so that its interpretation for the effects of a pervasive magnetization feature of the crust is suspect.

In general, the ADMAP-2s data characterize the diverse magnetic effects of Proterozoic-Archean cratons, Prote-
rozoic-Paleozoic mobile belts, Paleozoic-Cenozoic magmatic arc systems and the rift basins between East and 
West Antarctica (e.g., Aitken et al., 2014; Ferraccioli et al., 2011; Gohl et al., 2013; Jokat et al., 2010; Jordan 
et al., 2013). They also help resolve basement terranes and the intervening suture zones, intra-continental and 
continental margin rift basins, and regional plutonic and volcanic features like the Ferrar dolerites and Kirkpat-
rick basalts (e.g., Aitken et al., 2016; Ferraccioli & Bozzo, 2003; Ferraccioli et al., 2005, 2011; Golynsky, Golyn-
sky, et al., 2006; Goodge & Finn, 2010; Mieth et al., 2014). In combination with gravity, ice-probing radar, and 
other geophysical and geological data, the ADMAP-2s model facilitates studying continental rifting, intraplate 
orogenesis and basin subsidence, subduction and terrane accretion, seafloor spreading, and other large-scale 
geological processes of the Antarctic.
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Satellite magnetometer observations of crustal magnetic anomalies also provide important constraints for 
augmenting the ADMAP-2 compilation's regional near-surface data coverage gaps that are especially severe for 
areas offshore of West Antarctica and in East Antarctica. For this study, the fill values were estimated from the 
joint inversion of the local near-surface and Swarm satellite magnetic anomaly data (Kim et al., 2004, 2007). 
However, despite applying significant near-surface and satellite magnetic anomaly boundary conditions, the fill 
estimates must be used with care because they are not unique and subject to data and processing errors.

Combining Swarm satellite magnetic observations with the near-surface ADMAP-2 grid via the spherical coordi-
nate point dipole model yields further insights on the crustal anomaly components in both datasets. By honoring 
the data sets in the least-squares sense, the spherical point dipole model improves the crustal magnetic anomaly 
predictions at the intervening altitudes where conventional downward or upward continuation of each input data 
set is unreliable. Regionally pervasive magnetization enhancements of the crust typically are marked by near-sur-
face magnetic anomalies that persist up through Swarm altitudes, whereas relatively superficial magnetization 
enhancements tend to involve anomalies that fade quickly with increasing altitude.

Prominent near-surface and satellite magnetic anomaly maxima along the continental margins, for example, 
appear to mark the effects of rift-related magmatic products. The largest amplitude anomaly maximum in the 
Swarm data is over northern Wilkes Land, however, where giant meteorite impact in a normal-polarity geomag-
netic field at ca. 260 Ma may have further amplified crustal magnetization. This enhanced magnetic crust also 
appears to extend into southcentral Australia to produce a prominent conjugate satellite magnetic anomaly maxi-
mum (von Frese et al., 1986, 2013).

Satellite and near-surface magnetometers obtain limited accuracy measurements that strongly emphasize the 
respective lower and higher frequency attributes of the anomalies. Thus, standard downward and upward contin-
uations of the respective magnetometer data are largely ineffective in reconciling the anomalies over large altitude 
variations (e.g., Kim & von Frese, 2017; Kim et al., 2013). In general, multiple altitude anomaly measurements 
offer substantial interpretational advantages over single altitude observations.

The ADMAP-2 and -2s grids of scalar total magnetic field anomaly values at the interval of 1.5 km may be 
freely downloaded from the ADMAP website maintained by the Korea Polar Research Institute (http://admap.
kopri.re.kr). The website also provides complete access to the survey data as supplied and reprocessed for the 
ADMAP-2 compilation, as well as ADMAP's reports to SCAR on its activities and the status of magnetic survey-
ing in the Antarctic. It also provides the point dipole magnetic susceptibilities for estimating the Antarctic's 
magnetic anomaly potential, vector, and tensor components at any spherical coordinate on or above the Earth's 
mean geocentric radius.

ADMAP's activities demonstrate the power of international collaboration in producing and updating a coherent 
digital magnetic anomaly database and map of the Antarctic. The synthesis of the individual magnetic surveys 
into the ADMAP compilation greatly enhances their utility for geological studies of the Antarctic region south 
of 60°S.

Data Availability Statement
Swarm anomalies were obtained from the spherical harmonic model, LCS-1, downloaded from http://www.
spacecenter.dk/files/magnetic-models/LCS-1/. This study's anomaly grids can be generated by the ADMAP-2s 
equivalent magnetic point source model available from http://admap.kopri.re.kr/admapdata/ADMAP_2S_
EPS_20km.zip with MATLAB ® driver codes available from http://admap.kopri.re.kr/admapdata/JGR2022_
Kim_etal.zip and its mirrored site at https://admap.kongju.ac.kr.
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