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Because of the decreasing discovery rate of outcropping mineral deposits, quantitative
estimates of undiscovered deep mineral resources are of great interest to many stakeholders,
including governments, businesses, and researchers. Molybdenum (Mo) plays a crucial role
in modern societies worldwide by contributing to infrastructure, technology, and lifestyles.
In this paper, we present an up-to-date age–frequency compilation of globally reported
porphyry Mo resources and we used the tectonic diffusion model to estimate the potential
Mo resources at different depths in continental crust and according to different tectonic
settings. Our modeling indicated that, between 300 Ma and the present, about 5,600 por-
phyry Mo deposits and Mo-rich porphyry copper deposits were formed worldwide. About
70% of those with � 1.1 9 109 tons (t) of Mo resources remain, buried and at the surface,
whereas � 30% have been destroyed through uplift and erosion. In detail, the results sug-
gest that � 2.9 9 108 t of Mo resources exist within the continental crust above � 3 km.
Exposed deposits currently compose only � 7% of the endowment of porphyry Mo re-
sources during the Phanerozoic.

KEY WORDS: Mineral resources estimation, Porphyry Mo resources, Random walk, Tectonic
diffusion model.

INTRODUCTION

Mineral resources are of great significance for
supporting economic growth and the functioning of
modern society (Calas, 2017; Sekerin et al., 2019).
The global demand for mineral resources has in-
creased dramatically in the last 50 years. However,
mineral exploration performance has declined in the
last decade. One of the main reasons for this decline
is the apparent decrease in discovery rate of deposits
exposed at the Earth’s surface and the relative lack

of exploration under areas of deep cover or deep in
the Earth (Gonzalez-Alvarez et al., 2020). Many
different approaches to predict and assess undis-
covered mineral resources have been used, including
but not limited to computer-based mineral
prospectivity mapping (Agterberg, 1989; Carranza,
2008), ‘‘three-part’’ quantitative assessment (Singer,
1993), ‘‘three-step’’ mineral resource prediction
(Zhao et al., 2001), and nonlinear theory of mineral
resource prediction (Cheng, 2008, 2012). For exam-
ple, the three-part assessment (Singer, 1993) pro-
vides unbiased estimates of undiscovered mineral
resources by combining information about deposit
and prospect locations, grade and tonnage charac-
teristics of deposits, and estimates of the number of
undiscovered deposits (Singer, 2007; Singer &
Menzie, 2010; Singer & Kouda, 2011). Specifically,
numerical estimates of undiscovered deposits can be
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combined with grade and tonnage models using
Monte Carlo simulation to provide probabilistic
estimates of amounts of undiscovered resources
(Singer & Menzie, 2010). Notably, advances in
geographic information systems (GIS) (Carranza,
2008), nonlinear theory and methods (Cheng, 2008;
Chen & Cheng, 2016, 2018), and data-driven ma-
chine learning methods (Zuo et al., 2019; Chen et al.,
2022) have promoted mineral resource prediction
and assessment in a more intelligent and efficient
way over the past decades.

Deep mineral exploration is becoming a new
trend worldwide because of the decreasing number
of mineral deposit discoveries in outcrops, and deep
discoveries tend to be larger and more valuable, as
suggested by Schodde (2014), because deeper search
spaces have not yet been depleted. However, most
previous studies focused on mineral resources esti-
mation in the near surface, thus lacking an assess-
ment of mineral endowments at different depths of
continental crust. In this regard, Wilkinson and
Kesler (2007) proposed a spatiotemporal model for
the tectonic migration of deposits vertically through
the crust to calculate Earth�s endowment for various
types of mineral deposits, including porphyry cop-
per, orogenic gold, and granitic tin deposits. The
tectonic diffusion model relies on the compilation of
a large dataset of discovered mineral deposits (i.e.,
age–frequency distribution) to estimate the number
and resources of eroded and preserved deposits in
the crust. Examples of previous work that used the
tectonic diffusion model include Kesler and
Wilkinson (2008), who asserted that 62% of the
porphyry Cu deposits formed during the Phanero-
zoic time have been lost to erosion, only 38% re-
main in the crust, and only 1.2% of them have been
discovered. Another example is the study of
Wilkinson and Kesler (2010), who found that
94% of orogenic gold deposits formed in the last

3.5 Ga have been lost to erosion and only � 6%
remain.

Molybdenum is an important mineral resources
for modern society, and it has a wide range of uses,
from high-tech products to understanding the chem-
ical differentiation of Earth�s crust (Henckens et al.,
2018). Porphyry mineral deposits are the most
important source of Mo resources, including Mo-rich
porphyry Cu deposits, Climax-type porphyry Mo
deposits, and arc-related porphyry Mo deposits,
accounting for over 90% of Mo resources in the
world (Li & Liao, 2020). Porphyry Mo mineralization

is tied to specific tectonic settings associated with arc,
collision and rift. In this paper, we compiled an up-to-
date age–frequency dataset of globally reported
porphyry Mo resources and then we used the tectonic
diffusion model to estimate the potential Mo re-
sources at different depths in continental crust, no-
tably according to different tectonic settings.

TECTONIC DIFFUSION MODEL

Random Walk

The random walk can be regarded as a discrete
Markov chain in which the state at the next moment
is dependent only on the current state rather than
the past (Ibe, 2013). It has been used widely in
computer science, economics, and materials science
(Osborne, 1959; Dong et al., 2017; Ali et al., 2021).
The process of random walk modeling can be for-
mulated as:

P X nþ 1ð Þ ¼ inþ1jX 0ð Þ ¼ i0;X 1ð Þ ¼ i1; � � � ;X nð Þ ¼ inf g
¼ P X nþ 1ð Þ ¼ inþ1jX nð Þ ¼ inf g

ð1Þ

where X tð Þ ¼ it t ¼ 0; 1; 2; . . . ;n; nþ 1ð Þ is state it of
X at moment t, PfX nþ 1ð Þ ¼ inþ1jX 0ð Þ ¼ i0;X 1ð Þ ¼
i1; � � � ;X nð Þ ¼ ing is the probability of the state of X
at moment t = n + 1 under the condition of the
states before t = n + 1, and PfX nþ 1ð Þ ¼
inþ1ÞjX nð Þ ¼ ing is the probability of the state of X at
moment t = n + 1 under the condition of the state at
moment t = n. An equality between PfX nþ 1ð Þ ¼
inþ1jX 0ð Þ ¼ i0;X 1ð Þ ¼ x1; � � � ;X nð Þ ¼ xng and
PfX nþ 1ð Þ ¼ inþ1jX nð Þ ¼ ing means that the prob-
ability of the state inþ1 at moment t = n + 1 is
dependent only on the state in of X at moment n, i.e.,
a discrete Markov character.

Let inþ1 be j, and in be i. Equation 1 can then be
expressed as:

PfX nþ 1ð Þ ¼ jjX nð Þ ¼ ig ¼ pij nð Þ ð2Þ

where i and j are arbitrary states and pij nð Þ is the

probability of going from state i at moment n to state
j at the next moment nþ 1, which is a one-step
transition probability. When the one-step transition
probability does not change with time, the proba-
bility of one state changing into another state is
constant at each moment.
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Tectonic Diffusion Simulation

Porphyry deposits emplaced at depths of 1–
6 km are spatially and genetically related to por-
phyry granitoid intrusions (Carten, 1993; Guilbert &
Park, 2007). Once emplaced in the crust, deposits
are shifted shallowly or deeply because of tectonic
uplift or denudation, respectively. In general, a
deeper emplacement depth or smaller erosion rate
results in more time to exhume deposits. Hence, the
ages of porphyry deposits exposed at the surface can
be used to calculate the regional erosion rate
(Yanites & Kesler, 2015), and their age–frequency
distributions (i.e., the number of exposed deposits
versus age) reflect tectonic features of deposit posi-
tion changes through continuous uplift or denuda-
tion over time (Kesler & Wilkinson, 2006). As such,
a random walk with a Markov chain nature is an
ideal model to track stochastic changes quantita-
tively in deposit position with time. Although the
variation in depth of deposits can be complex, for a
single deposit the depth change rate may have been
stable over a short time interval (Zhao et al., 2016;
Zhou et al., 2019; Wan & Sun, 2021). For example,
since the Late Cretaceous, the depth changes in the
Pulang porphyry copper deposit caused by deposi-
tion and denudation have been divided into two
stages, and the erosion rate was almost constant in
each stage (Leng et al., 2018). Therefore, the varia-
tion in depth of deposits after a period of time can
be characterized by discrete state changes in the
random walk model.

To track the stochastic variation in depth of
deposits, we presupposed that deposits were em-
placed in a stable system where the emplacement
depth, the emplacement rate, and the probabilities
of changing position are invariable with geologic
time (Wilkinson & Kesler, 2007). Specifically, this
stochastic process is discretized and gridded in time–
depth space (Fig. 1a) where the vertical axis repre-
sents depth and the horizontal axis represents time.
Let the depth of the deposits at moment n be hn. The
probabilities of depth changes at the next moment
can be obtained as:

Pfhþ 1nþ1jhng ¼ phhþ1 ð3Þ

Pfhnþ1jhng ¼ phh ð4Þ

Pfh� 1nþ1jhng ¼ phh�1 ð5Þ

where Eqs. 3, 4, and 5 represent the subsidence
probability, stasis probability, and uplift probability,
respectively. These probabilities are utilized to
simulate complex depth variations of deposits over
time.

The parameters of the tectonic diffusion model
include (a) the rate of deposit emplacement, (b) the
distribution of the emplacement depth, and (c) fac-
tors that describe deposit depth changes (uplift,
stasis, and subsidence probabilities). During model-
ing, new deposits are emplaced in a specific depth
range, and the depths of the previous deposits
change randomly in two directions (uplift or subsi-
dence) or remain the same (stasis). If uplift occurs
after exposure on the surface, the deposits are ero-
ded and disappear. No subsidence occurs when the
deposits move to the maximum depth of the
numerical grid. Figure 1a shows an example of
random paths of 100 deposits changing over time,
with an initial emplacement depth of 5 units, and the
probabilities of uplift, stasis, and subsidence are 0.33.
The random walk paths of deposits during the 100
units of time can be divided into four types
(Wilkinson & Kesler, 2007): (1) After emplacement,
the deposits rise quickly to the surface for denuda-
tion; (2) the deposits rise to the surface for
denudation after a long period; (3) the deposits re-
main unchanged in the subsurface; and (4) the de-
posits are buried to greater depth. As a result, the
final age–frequency distribution of exposed deposits
derived from the model will approximate the ex-
pected log-normal distribution (Fig. 1b).

DATA MATERIALS AND METHODS

Global Porphyry Mo Resources Dataset

There are two main types of porphyry Mo re-
sources worldwide, namely porphyry Mo deposits
and Mo-rich porphyry Cu deposits (see USGS, www.
usgs.gov/centers/nmic/molybdenum-statistics-and-
information). Porphyry deposits are spatially and
genetically related to felsic porphyritic intrusions.
Most porphyry Cu deposits are formed mainly in arc
environments of continental margins (Sillitoe, 1998;
Cooke et al., 2005), but they also occur in conti-
nental collision belts, intracontinental environments,
and island arcs (Hou et al., 2004; Hou & Cook,
2009). Porphyry Mo deposits are often subdivided
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into Endako-type, Climax-type, and Dabie-type de-
posits, associated with subduction, rift, and collision
settings, respectively (Ludington & Plumlee, 2009;
Taylor et al., 2010; Audétat & Li, 2017; Chen et al.,
2017).

We compiled from the literature an up-to-date
global dataset of Mo-rich porphyry Cu deposits and
porphyry Mo deposits, mainly from Sinclair and
Goodfellow (2007), Singer et al. (2008), Ludington
and Plumlee (2009), Taylor et al. (2010), Dicken et al.
(2016) and many other papers. Here, the Mo-rich
porphyry Cu deposits refer to porphyry Cu deposits
with Mo grades of> 0.02%, the minimum Mo grade
in the currently compiled data of porphyry Mo de-
posits. The compiled dataset includes 294 deposits, of
which 236 have age data, 59 have emplacement depth
data, and 256 have reliable reported data of Mo re-
serves. The compiled data are available at https://gith
ub.com/myscren/Global-PMDs-compilation.

As shown in Figure 2, the deposits are mainly
distributed in three regions, including Eastern
Pacific province (i.e., the eastern half of the Pacific

Ring of Fire), Tethys belt, and North China Craton
and adjacent regions, with the age range of 10–
250 Ma, 10–100 Ma, and 90–300 Ma, respectively
(Fig. 3a). These three regions are tectonically asso-
ciated with the eastward subduction of the Pacific
plate, the closure process of the Neo-Tethys Ocean,
and the thickening and delamination of the North
China Craton, respectively (Sengör, 1987; Zhang
et al., 2006; Wu et al., 2008; Muller et al., 2016).
Figure 3b shows no significant difference in the
distribution of Mo resources of deposits in the three
regions, and we estimated the average Mo resource
(265 kt) per deposit by averaging all data. The few
data about the emplacement depth of deposits made
it difficult to assess the difference in the three re-
gions. Nonetheless, we can estimate the average
emplacement depth from the global deposit dataset,
which yielded a log-normal distribution (Fig. 3c).
The result shows that the Mo deposits have a sta-
tistical emplacement depth (� 2.6 km) that is dee-
per than that of porphyry Cu deposits (� 2 km, as
suggested by Meinert (1997)).

Figure 1. Random walk of deposits through time. (a) Possible paths of deposits in the process of random walk (light gray

lines). As suggested by Wilkinson and Kesler (2007), the random walk process can be divided into four cases: Line 1

represents the deposits that are quickly exhumed after emplacement, Line 2 represents the deposits that undergo long burial

before exposure at the surface, Line 3 represents the deposits that remain in the subsurface, and Line 4 represents the

deposits buried to greater depth. (b) Age–frequency distribution of exposed deposits obtained from modeling.
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Tectonic Diffusion Modeling of Mo Resources

The tectonic diffusion models were calibrated
by minimizing the residual sum of squares between
age–frequency distributions of computer simulation
(Fig. 1b) and real distribution (Fig. 3a). The residual
sum of squares (RSS) can be obtained as:

RSS ¼
X

f nð Þ � g nð Þð Þ2 ð6Þ

where f nð Þ and g nð Þ are the number of exposed
deposits at the nth time interval from model results
and actual dataset, respectively. Optimization of
tectonic diffusion modeling is a nondeterministic
polynomial problem, in which the objective func-
tions (RSS) without mathematical expression are
not necessarily continuous and differentiable.

Here, we utilized the differential evolution
algorithm (Storn & Price, 1997) to address the
optimization problem. This algorithm with simple
parameter settings can perform a global search and
avoid trapping in a local optimum when minimizing
the residual sum of squares (Yang et al., 2008; Ding
& Yin, 2017). The computer program for tectonic
diffusion modeling was designed using the sko
package in Python (https://github.com/guofei9987/sc
ikit-opt). The initial parameters and/or their con-

straints were set as follows: The population size and
maximum number of iterations were 50 and 500,
respectively. The emplacement rate, average
emplacement depth, standard deviation of the
emplacement depth, uplift probability, and stasis
probability were in the ranges of 0–500 (deposit
number), 0–10 (unit depth), 0–20 (unit depth), 0–1,
and 0–1, respectively. The subsidence probability
was calculated by one minus the sum of uplift and
stasis probabilities, and it was greater than zero. The
above parameters were placed and corrected itera-
tively until the optimal parameters are obtained.

RESULTS

The age–frequency spectra (Fig. 3a) suggests an
episodic nature of porphyry Mo deposits distribution
over the Phanerozoic time. As shown in Figure 4a
and c, Mo deposits have mainly two age groups ei-
ther in the world or China. First, we simulated the
age distribution using a global model (Fig. 4, Ta-
ble 1), and as expected, the second peaks of global
age–frequency distributions were not well fitted, as
shown in the simulation curves of Figure 4a and c.
Therefore, it is necessary to simulate the episodic
age spectra using two separate models (0–100 Ma

Figure 2. Spatial distribution of global porphyry Mo deposits and Mo-rich porphyry Cu deposits (compiled data are available at https://g

ithub.com/myscren/Global-PMDs-compilation).
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and 100–300 Ma). As such, we set the same
emplacement depth distribution, and different uplift
or stasis probabilities and emplacement rates in the
separate modeling by age distribution. The results

(Fig. 4b and d) suggest that the residual sum of
squares using a partition is smaller than that when
treating the group as a whole (Fig. 4a and c).
Moreover, given that a stable tectonic environment

Figure 3. (a) Age–frequency distribution (Bin = 2 Myr), (b) Mo resources distribution (Bin = 0.25 log10

kt), (c) emplacement depth distribution (Bin = 0.25 km) of global porphyry Mo deposits and Mo-rich

porphyry Cu deposits.
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should be required for tectonic diffusion modeling
(Fig. 5), we divided the compiled Mo deposit data
into four subsets according to different tectonic
settings (i.e., Eastern Pacific province, Tethys belt,
North China Craton and adjacent regions, and other
regions) and then simulated the age distributions
separately. The results in Figures 6, 7 and Table 3

suggest an improved data fitting with smaller RSS
value.

The number of deposits was estimated in the
following way: (1) Multiply emplacement rate by
time to get the number of emplaced deposits (Ta-
ble 3); (2) the number of exposed deposits was de-
rived from the sum of the values of the y-coordinate
for each age in fitting curve (Fig. 6a, b, c); (3) the

Figure 4. Age–frequency distributions of porphyry Mo deposits and Mo-rich porphyry Cu deposits worldwide (top panel)

and in China (bottom panel), and blue line indicates the computed number of exposed deposits using tectonic diffusion

modeling based on a global model (left panel), and two separate models by age (right panel).

Table 1. Parameters and results for a global model

Global China

Up-stasis-down (%) 0.16–0.68–0.16 Up-stasis-down (%) 0.23–0.65–0.12

Emplacement rate 98 / Ma Emplacement rate 28 / Ma

Mean model emplacement depth 2.6 km Mean model emplacement depth 2.6 km

Model emplacement depth standard

deviation

1.1 km Model emplacement depth standard

deviation

0.35 km

Total deposits (resources) � 29,400 (7.8 9 109 t) Total deposits (resources) � 8,400 (2.2 9 109 t)

Eroded deposits (resources) � 7,700 (2.0 9 109 t) Eroded deposits (resources) � 3,700 (9.8 9 108 t)

Extant deposits (resources) � 21,700 (5.8 9 109 t) Extant deposits (resources) � 4,700 (1.2 9 109 t)

< 3 km extant deposits (resources) � 10,200 (2.7 9 109 t) < 3 km extant deposits (resources) � 4,600 (1.2 9 109 t)

Residual sum of squares 342 Residual sum of squares 171
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number of buried deposits was obtained from
depth–frequency distribution except for the surface
(0 km, Fig. 7a, c, e); and (4) the number of emplaced
deposits minus the sum of exposed and buried de-
posits yielded the eroded deposits. In the separate
modeling by tectonic settings, we did not simulate
Mo resources of other regions because of few Mo
deposits data and scattered age distribution. How-
ever, we estimated the global Mo deposit numbers
by multiplying the total estimates of the above three
regions by 1.09, a ratio of the number of global de-
posits to that of the three regions in the compiled
data.

The tectonic diffusion estimates using the sep-
arate modeling by tectonic settings suggest that
5,600 deposits were emplaced during 0–300 Ma,

including � 260 exposed deposits, � 1,700 buried
deposits, and � 4,000 eroded deposits globally (Ta-
ble 3). Figure 7b, d and f show an abrupt increase
and then gradual decrease in deposit number with
increasing depth, and the modeling result is consis-
tent with the real emplacement depth distribution

(Fig. 3c). On a global scale, � 1,200 deposits, con-
taining � 3.2 9 108 t of Mo, exist within crustal
rocks above � 3 km, of which the estimate of Mo
resources of exposed deposits was consistent with
the identified Mo resources (about 6.9 9 107 t) and
comprised � 6.5% of the whole crustal endowment.
In addition, the results in Table 2 suggest that the
undiscovered Mo resources in China account for
62% of the global potential Mo resources.

DISCUSSION

Comparison with Deposit Density Model

The ‘‘three-part’’ quantitative assessment is
used widely and recommended by the United States
Geological Survey to evaluate the potential of
undiscovered mineral deposits (Singer, 1993; Singer
& Menzie, 2010). One of the important tools in the
‘‘three-part’’ methods is the deposit–density model
based on numbers of discovered deposits per unit

Figure 5. Tectonic diffusion modeling of two age groups. Left panels illustrate distribution of Mo deposits in age (x-axis)–

depth (y-axis) space, and colors are scaled as number of deposits in a 1 Ma 9 1 km area. Right panels show vertical

distribution of number of deposits versus depth. (a) Global depth–age distribution, (b) global depth–frequency distribution,

(c) depth–age distribution of China, (d) depth–frequency distribution of China.

758 Luo, Chen, and Xia



area of permissive tract in well-explored areas.
Using global mineral deposit data, Singer and
Kouda (2011) developed an empirical equation to
calculate mineral deposit density, thus:

log10 D50ð Þ ¼ 4:21 � 0:499 log10 að Þ � 0:225 log10 sð Þ
ð7Þ

where D50 is the 50th percentile estimate of density
in the number of deposits per 100,000 km2, a is the
size of a permissive tract (the probability of deposits
outside the boundary is negligible) in km2, and s is

the mean size in Mt. Other probability estimates
were obtained by the following equations:

log10 D90;D10ð Þ ¼ log10 D50ð Þ � 0:4494

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0092 þ 3:173 � lg að Þð Þ2�0:0056Þ

q ð8Þ

where D90 and D10 are the 90th and 10th percentile
estimates of density, respectively. The number of
deposits can be obtained as:

N ¼ a=100; 000 �D ð9Þ

Figure 6. Age–frequency distribution of porphyry Mo deposits and Mo-rich porphyry Cu deposits in different tectonic

settings, including (a) Eastern Pacific province, (b) Tethys belt, (c) North China Craton and adjacent regions. The blue lines

indicate the fitting curves of age spectra of exposed deposits obtained from tectonic diffusion modeling.
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where N is the number of deposits, and D is the
spatial density of deposits. The expected number of
deposits in the permissive tract was obtained as:

log10 E Nð Þ ¼ log10 N50ð Þ
þ log10 N10ð Þ � log10 N50ð Þð Þ=1:29ð Þ2�2

ð10Þ

where E Nð Þ is the expected number of deposits, and
N50 and N10 are the 50th and 10th percentile esti-
mates of the number, respectively.

Here, grade and tonnage outliers were removed
by using the modified Thompson tau statistical
method. The selected deposits with tonnage and
grade data (Fig. 8a) in Eastern Qinling–Dabie re-
gion were used to compare the estimates of Mo re-
sources between tectonic diffusion model and
deposit density model. The selected porphyry Mo
deposits included Shapinggou, Donggou, Tangjiap-
ing, Qian’echong, Shapoling, Leimengou, Shiyao-
gou, Yaochong, Jinduicheng, Nannihu-

sandaozhuang, Shijiawan, and Balipo. Using Eqs. 7,
8, 9, and 10, with a ¼ 94; 100 km2 and
log10 sð Þ ¼ 2:76, the expected number of deposits was
14; meanwhile, this number was 15 (obtained from
the sum of the values of the y-coordinate for each
age in fitting curve) when using tectonic diffusion
simulation (Fig. 8b, Table 3). The estimate of de-
posit density model based on a large number of
exposed deposits was more sensitive to the resources
near the surface. The introduction of variables with
time and depth makes the tectonic diffusion mod-
eling accessible to estimate the number of deposits
at different depths, in addition to deposits exposed
on the surface. As expected, the deposit density
model estimated the porphyry Mo resources of
7.8 Mt in the Eastern Qinling–Dabie area (using the

average Mo resources of 554 kt), which was close to
the estimate of � 8.3 Mt Mo resources in the near
subsurface using the tectonic diffusion simulation.
More importantly, our model suggests � 11.7 Mt
Mo resources within a depth of 0–1 km in the
Eastern Qinling–Dabie area.

Implication for Regional Erosion Rate

Once deposits are emplaced in the crust, their
positions change vertically due to erosion and/or
sedimentation. Therefore, depth variations in por-
phyry deposits can indicate indirectly the process of
denudation over geological timescales (Yanites &
Kesler, 2015). By fitting the age–frequency distri-

Table 2. Parameters and results for two separate models by age

Global China

0 – 100 Ma Up-stasis-down

(%)

0.57–0.09–

0.34

0 – 100 Ma Up-stasis-down

(%)

0.49–0.22–

0.29

Emplacement

rate

79 /Ma Emplacement

rate

11 / Ma

100 – 300 Ma Up-stasis-down

(%)

0.06–0.53–

0.41

100 – 300 Ma Up-stasis-down

(%)

0.25–0.15–

0.60

Emplacement

rate

110 / Ma Emplacement

rate

81 / Ma

Mean model emplacement depth 2.6 km Mean model emplacement depth 2.6 km

Model emplacement depth standard

deviation

1.39 km Model emplacement depth stan-

dard deviation

1.2 km

Total deposits (resources) � 29,900 (7.9 9 109 t) Total deposits (resources) � 17,300 (4.6 9 109 t)

Eroded deposits (resources) � 17,400 (4.6 9 109 t) Eroded deposits (resources) � 9,600 (2.5 9 109 t)

Extant deposits (resources) � 12,500 (3.3 9 109 t) Extant deposits (resources) � 7,700 (2.0 9 109 t)

< 3 km extant deposits (resources) � 5,400 (1.4 9 109 t) < 3 km extant deposits (re-

sources)

� 2,100 (5.6 9 108 t)

Residual sum of squares 318 Residual sum of squares 158

bFigure 7. Tectonic diffusion modeling of different tectonic

settings. Left panels illustrate distribution of Mo

deposits in age (x-axis)–depth (y-axis) space. Right

panels show vertical distribution of number of

deposits versus depth. (a) Depth–age distribution

and (b) depth–frequency distribution in Eastern

Pacific province, (c) depth–age distribution and (d)

depth–frequency distribution in Tethys belt, (c)

depth–age distribution and (d) depth–frequency

distribution in North China Craton.
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butions of deposits at a region scale, tectonic diffu-
sion modeling can derive the ratio of uplift and
subsidence probabilities, which somewhat reflect the
regional erosion rate. The geological setting is one of
the main factors that influence the ratio of the
uplift/subsidence probability. Uplift should pre-
dominate over subsidence (ratio> 1) in orogenic
belts, such as the Himalaya and Andes (Gasparini &
Whipple, 2014; Whipple & Gasparini, 2014; Abra-
hami et al., 2016). Marginal orogenic belts (e.g.,
Eastern Pacific province) have higher erosion rates
than intracontinental orogenic belts (e.g., Eastern
Qinling–Dabie) because of rapid uplift and greater
slopes (Cui, 1999; Willenbring et al., 2013; Larsen
et al., 2014). Tectonic diffusion modeling was em-
ployed to calculate the ratio of the uplift or subsi-
dence probability of the Eastern Pacific province

and Eastern Qinling–Dabie region. According to the
most robust probability estimates obtained in Ta-
ble 3, the results show that the uplift/subsidence
probability ratio of Eastern Qinling–Dabie (up/-
down = 2.2) was smaller than that of Eastern Pacific
province (up/down = 8), suggesting that tectonic
diffusion modeling can well reflect the features of
real tectonic erosion. Moreover, the age of (cur-
rently exposed) porphyry deposit reflects how much
time a deposit spends being exhumed to the surface,
and therefore, the erosion rate can be calculated by
dividing the average emplacement depth by age
(Yanites & Kesler, 2015). At a regional scale, the
estimates of average erosion rate (calculated by
dividing the average emplacement depth by average
age) in Eastern Pacific province and Eastern Qin-
ling–Dabie were 63.4 and 19.0 m/Ma, respectively.

Figure 8. (a) Tonnage–grade relationship and (b) tectonic–diffusion modeling of porphyry Mo deposits in

Eastern Qinling–Dabie region, China. Red bars represent age–frequency distribution for real deposits, and

blue line represents modeled exposed deposits.
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Uncertainties of Tectonic Diffusion Modeling

Uncertainties are inevitable in any method for
mineral resources prediction (Zuo et al., 2021). Be-
cause the tectonic diffusion model is based on
empirical geological processes (formation and
destruction of deposits), several factors or parame-
ters can introduce uncertainties in mineral resource
estimates, such as the average resources per deposit,
the age–frequency distribution, and the emplace-
ment rate of deposits. First, the average resources
per deposit and the age–frequency distribution were
calculated based on the current data compilation of
global deposits, and it seems that these statistical
parameters used in tectonic diffusion modeling will
certainly change in future updated data compilation.
Nonetheless, Kesler and Wilkison (2009) suggested
that the number of known deposits and average re-
sources, as two main sources of uncertainties, will
offset each other to let estimation results avoid
changing by more than an order of magnitude.

The age–frequency distribution of deposits
determines the optimization schemes in the tectonic
diffusion model. Because preservation bias (erosion
and destruction loss) is not the only process shaping
the age–frequency distribution of deposits (Fig. 3a),
the empirical distribution can be episodic rather
than exponential. For example, there are two peaks
in the age–frequency distribution of deposits since
300 Ma (Fig. 3a), corresponding to two separate
time windows, 0–100 Ma and 100–300 Ma, for por-
phyry Mo mineralization events. As mentioned
above, treating two separate models arbitrarily as
one will introduce uncertainties in Mo resource
estimates. The heterogeneous temporal distribution
of deposits is attributed to the episodic nature of
geological processes—the formation and destruction
of deposits. As such, the above tectonic diffusion
models employing a constant rate of deposit
emplacement inevitably introduce uncertainties in
resources estimation.

Moving forward, we divided the Mo deposit
data into four subsets according to different tectonic
settings, and Mo deposits were simulated separately
in three regions (including Eastern Pacific province,
North China Craton and adjacent regions, Tethys
belt) with different age–frequency distributions. The
results show that the total estimated Mo resource
(either eroded or remained resources) using a global
model (2.0 9 109 t and 5.8 9 109 t, Table 1) and that
of two separate models by age distribution
(4.6 9 109 t and 3.3 9 109 t, Table 2) were larger
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than that of separate models by tectonic settings
(4.1 9 108 t and 1.0 9 109 t, Table 3). More impor-
tantly, the separate models by tectonic settings ob-
tained a minimum value of RSS (Table 3).
Therefore, the results demonstrate that more de-
tailed separate modeling can improve the robustness
of resource estimates when using the tectonic dif-
fusion model. We did not distinguish the different
types of Mo deposits including Endako-type, Cli-
max-type, and Dabie-type deposits, because suffi-
cient data of known deposits are a prerequisite for
tectonic diffusion modeling. Although many uncer-
tainties remain, the tectonic diffusion model we used
here may describe the first-order controls on the
formation and destruction of deposits and it pro-
duced a plausible estimate of Mo resources com-
pared with the deposit density model.

CONCLUSIONS

We utilized the tectonic diffusion model, based
on an up-to-date global data compilation, to esti-
mate quantitatively molybdenum resources in por-
phyry Mo deposits and Mo-rich porphyry Cu
deposits at different depths of the continental crust.
Our model suggests that on a global scale, a total
of � 5,600 porphyry Mo deposits and Mo-rich por-
phyry Cu deposits were formed during 0–300 Ma,
only � 4,000 of these deposits (i.e., � 1.0 9 109 t of
Mo) remained at various crustal depths, and � 30%
of the deposits were destroyed during subsequent
uplift and erosion. Moreover, deposits contain-
ing � 2.9 9 108 t of Mo exist within crustal rocks
above � 3 km. Exposed deposits comprise � 22%
of this endowment. Moving forward, given that the
rates of deposit emplacement and crustal denuda-
tion can be dynamic over geological time, the tec-
tonic diffusion model needs to be improved using
constraints from available geological or geochemical
proxies of tectonic erosion and magmatism in the
optimization.
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