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• Within four years, the iron oxides in the
tailings underwent fast geochemical
changes.

• A sharp decrease in crystallinity led to
high susceptibility to dissolution.

• Redox conditions in the estuarine envi-
ronment favored poorly crystalline Fe
oxides.

• Mean crystal size of Fe oxides decreased
over time increasing its reactivity.

• The overall geochemical changes affect
the fate of potentially detrimental ele-
ments.
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Iron (Fe) oxyhydroxides provide many functions in soils, mainly owing to their large surface area and high sur-
face charge density. The reactivity of Fe oxyhydroxides is function of their mineralogical characteristics
(e.g., crystallinity degree and crystal size). Detailed studies of these features are essential for predicting the sta-
bility and reactivity of these minerals within soil and sediments. The present study aimed to evaluate geochem-
ical changes in Fe-rich tailings after the world's largest mining disaster in SE Brazil (in 2015) and to predict the
potential environmental implications for the estuary. The mineralogical characteristics of the tailings were stud-
ied at three different times (2015, 2107, and 2019) to assess how an active redox environment affects Fe
oxyhydroxides and to estimate the time frame within which significant changes occur. The study findings indi-
cate a large decrease in the Fe oxyhydroxides crystallinity, which were initially composed (93%) of highly crys-
talline Fe oxyhydroxides (i.e., goethite and hematite) and 6.7% of poorly crystalline Fe oxyhydroxides
(i.e., lepidocrocite and ferrihydrite). Within 4 years the mineralogical features of Fe oxyhydroxides had shifted,
and in 2019 poorly crystalline Fe oxyhydroxides represented 47% of the Fe forms. Scanning electron microscope
micrographs and themean crystal size evidenced a decrease in particle size from109 nm to 49 nm for goethite in
the d111 direction. The changes in mean crystal size increased the reactivity of Fe oxyhydroxides, resulting in a
greater number of interactions with cationic and anionic species. The decreased crystallinity and increased
reactivity led to the compounds being more susceptible to reductive dissolution. Overall, the findings show
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that the decrease in crystallinity alongwith higher susceptibility to reductive dissolution of Fe oxyhydroxides can
affect the fate of environmentally detrimental elements (e.g., phosphorus and trace metals) thereby increasing
the concentration of these pollutants in estuarine soils and waters.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Iron (Fe) ore production is one themost important mining activities
worldwide, with an annual production of approximately 3000 Mt.
(Lu, 2015). However, Fe mining also generates tons of tailings, which
are usually stored in dams (Glombitza and Reichel, 2014; Lu, 2015;
Zheng et al., 2011). The tailings are mainly composed of fine particles
that are rich in Fe oxides and hydroxides (e.g. hematite, goethite,
maghemite, and magnetite) and minor amounts of quartz, kaolinite,
gibbsite, and pyrite (Botha and Soares, 2015; Lu, 2015; Silva et al.,
2020; Zhang et al., 2006).

Fe oxyhydroxides (here including oxides, hydroxides, and
oxyhydroxides) commonly occur as nanoparticles in soils and sedi-
ments (Faivre and Frankel, 2016; Fontes and Weed, 1991). Due to
their small particle size (as small as 1 or 2 nm), large specific surface
area (up to 600 m2 g−1) and large number of structural defects, Fe
oxyhydroxides are among the most reactive minerals found in terres-
trial environments (Cornell and Schwertmann, 2003; Schwertmann,
1988).

Several Fe oxyhydroxides have been recognized, and most of them
are common in natural environments (Bigham et al., 2002; Faivre and
Frankel, 2016). However, only eight are frequently found in soils and
sediments, e.g., hematite, maghemite, magnetite, ferrihydrite, green
rust, goethite, lepidocrocite, and schwertmannite (Bigham et al.,
2002). The structure of Fe oxyhydroxides consists of closely packed
arrays of anions (O2− or OH−), commonly forming three-dimensional
arrangements such as octahedral and/or tetrahedral packings
(Schwertmann and Taylor, 1989). The large specific surface area of
these compounds (often >100 m2 g−1) and the variability of minerals
is a result of the arrangement of Fe(O/OH)6, FeO6, or FeO4 (Bigham
et al., 2002; Cornell and Schwertmann, 2003).

In soils, Fe oxyhydroxides play numerous important/relevant func-
tions such as providing sorption sites for essential nutrients
(e.g., phosphorus; Fink et al., 2016), promoting organo-mineral interac-
tions that increase soil organic matter stabilization (Wang et al., 2019)
and attenuating contamination by immobilizing potentially toxic ele-
ments (e.g., trace metals; Herbert, 1996; Rutten and de Lange, 2003;
Sherameti and Varma, 2015).Within the upland soils, Fe oxyhydroxides
are poorly soluble at a wide range of pH (4–10) and in the absence of
complexing (e.g., organic compounds) or reducing environments
(e.g., anaerobic media). Under these environments, Fe oxyhydroxides
generally exhibit high stability (Benjamin et al., 1996; Cornell and
Schwertmann, 2003; Hartley et al., 2004).

By contrast, inwetland soils and sediments, Fe oxyhydroxides present
lower stability in response to redox variations (Cummings et al., 2000;
Schwertmann, 1991). The reductive dissolution of Fe oxyhydroxides can
take place under suboxic and/or anoxic soil conditions (Lovley, 1991;
Reddy and DeLaune, 2008). This is a conspicuous process in estuarine
soils and sediments where these redox conditions probably occur
(Reddy and DeLaune, 2008). Reduction of Fe oxyhydroxides promotes
mineral dissolution and also the release of adsorbed cations and anions
(Bonneville et al., 2004; Lovley et al., 2004).

In addition to being affected by the soil geochemical environment,
the dissolution of Fe oxyhydroxides can also be affected by some intrin-
sic properties of the minerals; e.g., surface area, degree of crystallinity,
and isomorphic Al-substitution (Cornell and Schwertmann, 2003;
Fontes and Weed, 1991). These characteristics are interrelated, and
the combined effects on mineral dissolution are associated with struc-
tural disorders, crystal defects (e.g. vacancies), and increased number
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of surface interactions, resulting in a weakening of the Fe\\O bonds,
ultimately increasing the susceptibility of Fe oxyhydroxides to dissolu-
tion (Larsen and Postma, 2001; Ruan and Gilkes, 1995; Strauss et al.,
1997).

Detailed studies of the mineralogical characteristics of Fe
oxyhydroxides are essential for predicting the stability and reactivity
of these minerals in soils and sediments, as well as the potential release
of associated elements, such as potentially toxic elements (e.g., trace
metals; Buekers et al., 2008; Cui et al., 2020; Gomes et al., 2017;
Harford et al., 2015; Pereira et al., 2008).

Thus, the present study aimed to assess themineralogical changes in
Fe oxyhydroxide-rich mine tailings deposited in the Doce River estuary
(SE Brazil) in 2015 after the world's largest mining disaster (Carmo
et al., 2017; Escobar, 2015). We performed a detailed mineralogical as-
sessment in different years (2015, 2017, and 2020) by using X-ray dif-
fraction (XRD), attenuated total reflectance Fourier transform infrared
(ATR-FTIR) and scanning electron microscopy (SEM) in addition to dif-
ferent types of chemical analysis, such as elemental analysis and se-
quential extraction procedures.

The Doce River estuary provides a unique framework enabling as-
sessment of how an active redox environment, driven by tide regime,
affects Fe oxyhydroxides and also estimation of the time frame within
which significant mineralogical changes may occur. Previous studies
in the same study area have reported the presence of potentially toxic
elements and phosphorus associated with Fe oxyhydroxides in the
mine tailings (Queiroz et al., 2018a; Gabriel et al., 2020). Thus, the pres-
ent study is important for determining the actual role of Fe
oxyhydroxides in the fate of these environmentally detrimental ele-
ments (Queiroz et al., 2018a, 2021a; Bernardino et al., 2019).

2. Materials and methods

2.1. Study site and sampling

The study site is located at the Doce River estuary, SE Brazil (19°38′–
19°45′S and 39°45′–39°55′W; Fig. 1) which, after failure of the Fundão
dam in 2015, received a large quantity of fine textured Fe-rich mining
tailings (Gomes et al., 2017; Queiroz et al., 2018a). The estuarine region
is characterized by two distinct climate seasons: a dry season, between
April and September, and a wet season marked by peaks in river
flooding, between October and March (de Mello et al., 2012; Gabriel
et al., 2020). Moreover, in the Doce River estuary, there is a diurnal
tide regime and a high input of freshwater which favors the occurrence
of periodically flooded soils (Bernardino et al., 2018).

In the estuary, field samplingwas conducted at three different times.
The first sampling campaign was conducted in 2015, seven days after
arrival of the tailings to the estuary. The other two field campaigns
were performed in 2017 and 2019, i.e., two and four years after the di-
saster. The estuarine soil samples were collected down to 40 cm depth
using polyvinyl chloride tubes attached to a waterlogged soil sampler
(Howard et al., 2014; LaForce et al., 2000; Otero et al., 2009). The sam-
pling locations were recorded to enable the same sites to be sampled
in the different years. The samples were hermetically sealed and
transported in a vertical position at a temperature of approximately
4 °C (Barcellos et al., 2019; Howard et al., 2014; LaForce et al., 2000;
Nóbrega et al., 2014). In the laboratory, the most representative soil
layer of deposited tailings (i.e., up to 0–15 cm layer) was selected and
immediately analyzed. Additionally, a sample of tailing collected inside
the Fundão damwas provided by the Brazilian National Mining Agency.



Fig. 1. (A) Location of the study site in theDoce River estuary, in themunicipality of Regência, Espírito Santo state, Brazil. In detail, (B) the freshly deposited Fe tailings on the estuarine soils
in 2015 and (C) the sampled ~5 cm layer of the Fe-rich fine textured tailing deposited in the estuary.
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The pH and redox potential (Eh) values of all samples were mea-
sured in the field with portable meters (HANNA, model HI98121). The
pH was measured with a glass electrode, previously calibrated with
standard solutions (pH 4.0 and 7.0). The Eh values were recorded with
a platinum electrode tested with a quality control solution (HI7021M
240 mV, 25 °C ORP Test Solution), and the values were adjusted by
adding the value for the calomel reference electrode (+244 mV S.H.E.).

2.2. X-ray diffraction and calculation of mean crystal size (MCS)

Themineralogy of the clay fraction (<2 μm)was determinedwith
an X-ray diffractometer (Rigaku Miniflex II), with CuKα radiation.
The selected samples and tailing were scanned from 20 to 60° 2θ,
step size of 0.02° 2θ and counting time of 5 s step−1. Before analysis,
the samples were treated with 9% sodium hypochlorite to remove
organic matter, and sand was removed by wet sieving after
dispersion of the suspension with 0.01 mg L−1 Na2CO3 (Siregar
et al., 2005). Subsequently, the dried clay fraction (grounded at
0.25 mm) was obtained after separation from the silt fraction by
the sedimentation method (Stoke's law; Jackson, 2005) and
analyzed (powder sample; Pansu and Gautheyrou, 2006).

The mean crystal size (MCS) was calculated from the width of the
half-height of the reflexes for goethite (d110 and d111 planes) and
hematite (d012 and d110 planes) using the Scherrer formula (see Klug
and Alexander, 1974) and after correcting the width at half-height
using NaCl as an internal standard (Singh and Gilkes, 1992).

2.3. Attenuated total reflectance Fourier transform infrared (ATR-FTIR)
analysis

ATR–FTIR data were obtained with a spectrometer (PerkinElmer
Spectrum Two), with N2 as the purge gas. Spectra were acquired via a
diamond crystal (45° angle of incidence). The tailings and selected
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samples were macerated in an agate mill prior to data collection. The
samples were arranged over the entire crystal and were then pressed
at a constant force of 115 N. The spectra were obtained at a spectral
range of 400 cm−1 to 4000 cm−1. A total of 50 co-added spectra were
obtained for each spectrum, at a resolution of 4 cm−1, and adjusted
using the attenuated total reflectance (ATR) method.

2.4. Scanning electron microscopy (SEM) analysis

SEM photomicrographs of the samples were obtained using a
SU8010 cold field emission scanning electron microscope (FESEM,
Hitachi, Japan). Elemental analysis was carried out using an energy-
dispersive X-ray spectroscopy (EDS, AMETEK-EDAX, USA) attached to
the scanning electron microscope. For EDS analysis, the selected sam-
ples and tailings were anchored tightly to the surface of the conducting
tape after coating with a thin layer (0.5–15 nm) of gold, and they were
then transferred directly to the microscope.

2.5. Fe sequential chemical extraction

Sequential extraction of Fe was carried out using a combination of
methods proposed by Tessier et al. (1979), Huerta-Diaz and Morse
(1990), and Fortin et al. (1993). The combined method enables the de-
termination of six distinct fractions (Table 1), operationally defined as
follows: exchangeable and soluble Fe (FeEX); Fe bound to carbonates
(FeCA); Fe bound to ferrihydrite (FeFR), lepidocrocite (FeLP), crystalline
Fe oxyhydroxides (i.e., goethite and hematite, FeCR); and pyritic Fe
(FePY). For additional details, see Ferreira et al. (2007a), Otero et al.
(2009), and Machado et al. (2014).

The Fe concentrations were obtained by an Inductively Coupled
Plasma - optical emission spectrometer (Thermo Fisher Scientific, Wal-
tham). Curve calibration solutionswere prepared by dilution of certified
Fe standard solution (43149-100ML-F) and certified reference material



Table 1
Description of solid-phase fractionation analysis of iron (Fe) according to Tessier et al.
(1979), Huerta-Diaz and Morse (1990), and Fortin et al. (1993).

Fraction Abbreviation Chemical Extractora/Procedure

Exchangeable and soluble Fe FeEX

Extracted with a 1 mol L−1 MgCl2
solution at pH adjusted to 7.
Agitation for 30 min and then
centrifuged at 10,000 rpm for

30 min.

Fe bound to carbonates FeCA

Extracted with a 1 mol L−1 NaOAc
(sodium acetate) solution at pH 5.

Agitation for 5 h and then
centrifuged at 10,000 rpm for

30 min.

Fe bound to ferrihydrite FeFR

Extracted with a 0.04 mol L−1

hydroxylamine + acetic acid 25%
(v/v) solution. Agitation for 6 h at
30 °C and then centrifuged at

10,000 rpm for 30 min.

Fe bound to lepidocrocite FeLP

Extracted with a 0.04 mol L−1

hydroxylamine + acetic acid 25%
(v/v) solution. Agitation for 6 h at

96 °C and then centrifuged at
10,000 rpm for 30 min.

Fe bound to hematite and
goethite, i.e., high crystal-

linity Fe phases
FeCR

Extracted with a 0.25 mol L−1

sodium citrate +0.11 mol L−1

sodium bicarbonate solution and 3 g
of sodium dithionite. Agitation for
6 h at 75 °C and then centrifuged at

10,000 rpm for 30 min.

Pyritic Fe FePY

Extracted with concentrated HNO3.
The samples were agitated for 2 h

then washed with 15 mL of
ultrapure water. Before extraction
the samples were subjected to

treatment with 10 mol L−1 HF to
remove phyllosilicates, and

concentrated H2SO4 was then added
to remove Fe associated with organic

matter

a All used solutions and centrifuge tubes were purged with N2 flow to guarantee a free
oxygen condition. Between each extraction the residue from prior step waswashed twice
with 20 mL of deoxygenated Milli-Q water.
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(SRM2709a San Joaquin)was used to guarantee the quality control pro-
cedures. The Fe concentration recovery values were above 90%.

3. Results

3.1. Physicochemical conditions

The Eh (+360 mV) and pH (6.0) values of the tailings sample from
inside the Fundão dam were characteristic of oxidizing conditions (>
+300 mV; Reddy and DeLaune, 2008) (Fig. 2). In the estuary, immedi-
ately after the disaster (in 2015), the Eh and pH values were
Fig. 2. Eh-pH diagramwith the data of the tailings sample from Fundão dam and the samples c
conditions (i.e., highly reduced, reduced, moderately reduced and oxidized) are adapted from
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respectively +64 mV and 7.0, indicating moderately reducing condi-
tions (0 to +300 mV; Fig. 2). In 2017, the Eh (−114 mV) and pH (7.0)
values indicated reduced conditions (Eh values <0 mV; Fig. 2). In
2019 (four years after the arrival of the tailings), the conditions were
moderately reducing (Eh = 44 mV; pH= 6.0; Fig. 2).

3.2. X-ray diffraction and mean crystal size (MCS)

The clay XRD patterns of the tailings sample showed the presence of
goethite (0.157, 0.173, 0.181, 0.193, 0.219, 0.226, 0.245, 0.258, 0.269,
0.338 and 0.418 nm; Fig. 3), hematite (0.160, 0.169, 0.184, 0.269,
0.252, and 0.371 nm) and kaolinite (0.234, 0.358 nm). In the estuary
samples obtained in 2015, 2017, and 2019, the clay XRD patterns
showed a similar mineralogical assemblage, also with the presence of
goethite (0.157, 0.258, 0.245, 0.338, and 0.418 nm; Fig. 3), hematite
(0.157, 0.169, 0.184, 0.252, and 0.269 nm), and kaolinite (0.234,
0.358 nm) (Fig. 3).

In addition, sharper goethite peaks (at 0.418, 0.269, 0.245, 0.219,
0.193, 0.181, and 0.172 nm) were observed in the tailings sample, and
the sharpness gradually decreased in the estuary samples collected in
2015, 2017, and 2019. For hematite, sharper peaks were also observed
in the tailings sample (0.371, 0.269, 0.252, and 0.184 nm; Fig. 3), but de-
creased gradually in the estuary samples collected in 2015, 2017, and
2019.

The mean crystal size (MCS) of goethite in the d110 direction was
56.14 nm for the tailings sample and 86.25, 42.93, and 29.78 nm for the
estuary samples from 2015, 2017, and 2019 respectively (Table 2). The
MCS of goethite in the d111 direction was 109.38 nm for the tailings and
87.50, 61.70, and 48.62 nm for the estuary samples collected in 2015,
2017, and 2019 (Table 2). In the tailings sample, the MCS of hematite
was 54.89 and 82.76 nm for the d012 and d110 directions, respectively.
For the estuary samples from2015, 2017, and 2019, theMCS values of he-
matite were not calculated for the d012 and d110 planes due to absence or
overlapping of peaks, and irregular peak morphology (Fig. 3).

3.3. ATR-FTIR results

The tailings showed bands at 3131 to 532 cm−1, assigned to Fe
oxyhydroxides, and at 3131, 1650, 1008, and 798 cm−1 due to the
stretching vibration of O\\H bonds assigned to goethite. The lower
stretching band at 532 cm−1 was assigned to hematite (Fig. 4;
Chukanov, 2014).

In the samples collected in the Doce River estuary in 2015, 2017, and
2019, bands assigned to Fe oxyhydroxides were observed at 2985 to
452 cm−1 (Fig. 4). Themost prominent bands in the estuary samples oc-
curred at 1003, 793, and 749 cm−1 (Fig. 4), i.e. the bands typically ob-
served for goethite and lepidocrocite (Chukanov, 2014). In addition, in
all the samples from the estuary (i.e., 2015, 2017, and 2019), distinct
bands assigned to ferrihydrite were observed at 1026 to 676 cm−1

(Fig. 4).
ollected in the Doce River estuary in 2015, 2017, and 2019. The Eh-pH diagram and redox
Reddy and DeLaune (2008).



Fig. 3. XRD patterns from the tailings sample and soil samples collected in the estuary in 2015, 2017 and 2019. Kaolinite (K), Goethite (Gt), Hematite (Hm).
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3.4. SEM-EDS results from tailings and estuary samples from Doce River
estuary

The SEM micrographs of the tailings samples (Fig. 5A) revealed the
presence of irregular (undefined shape) particles of Fe oxyhydroxides
that occur naturally in soil and sediments (see Bigham et al., 2002).
The presence of Fe oxyhydroxides was revealed by SEM-EDS analysis
of the central part of the particles with a dominant FeO chemical com-
position (Fig. 5E). The SEMmicrographs showed irregularly shaped par-
ticles in samples from 2015 (Fig. 5B), 2017 (Fig. 5C), and 2019 (Fig. 5D),
with similar chemical composition (i.e., predominantly FeO; Fig. 5E)
and also the presence of Fe oxyhydroxides. However, for these sample,
the SEM micrographs revealed gradually smaller particle sizes (Fig. 5
B, C andD) relative to themineral particles observed in the tailings sam-
ple (Fig. 5A).

3.5. Sequential extraction of Fe

The Fe sequential extraction showed that the Fe in the tailings was
mainly associated with crystalline Fe oxides (FeCR: 92% Fig. 6) followed
by poorly crystalline Fe oxyhydroxides (FeLP: 4% and FeFR: 0.1%; Fig. 6)
and pyritic iron (FePY 4%). Fe associated with FeEX and FeCA accounted
for less than 1% of total Fe.
Table 2
Corrected d-spacing and mean crystal size (MCS) of goethite (Gt) and hematite (Hm) for
the clay fraction of the tailings (inside the Fundão dam) and the samples collected in the
Doce River estuary in 2015, 2017, and 2019.

Sample d-spacing (nm)a MCS (nm)

Gt110 Gt111 Hm012 Hm110 Gt110 Gt111 Hm012 Hm110

Fundão dam 0.417 0.245 0.371 0.252 56.14 109.38 54.89 82.76
2015 0.416 0.245 n.d 0.252 86.25 87.50 n.d n.d
2017 0.416 0.245 n.d 0.251 42.93 61.70 n.d n.d
2019 0.417 0.244 n.d 0.251 29.78 48.62 n.d n.d

a Corrected d-spacing using halite as an internal standard. N.d. = not determined.
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Samples from the estuary changed significantly over time. Similarly,
to the tailings, in 2015, most of the Fe was associated with crystalline
oxides (FeCR: 93%), followed by the FeFR (3%) and FeLP (3% Fig. 6).
The FeEX, FeCA, and FePY together also represented less than 1% of
the total Fe content (Fig. 6).

However, in the following years, the data showed a marked change
in the crystallinity of Fe oxyhydroxides in the estuary. In 2017 and
2019, FeCR represented 63% and 52% respectively, of the total Fe con-
tents. By contrast, Fe associated with poorly crystalline oxyhydroxides
(i.e., FeFR + FeLP) increased to 37% of total Fe in 2017 and to 47% in
2019 (Fig. 6). Fe associated with the other fractions (i.e., FeEX, FeCA,
and FePY) occurred in low proportions, representing less than 1% of
the total Fe (0.2 ± 0.2%), in both 2017 and 2019.

4. Discussion

4.1. The physicochemical changes

The physicochemical conditions of the tailings inside the Fundão
dam indicated the existence of oxidizing conditions. However, in 2015
the soil physicochemical conditions changed to a moderately reduced
environment, commonly observed in soils and sediments in estuarine
environments (Cuadros et al., 2017; Nóbrega et al., 2015; Queiroz
et al., 2018b). By 2017, the physicochemical conditions had become fur-
ther reduced and favorable tomicrobial Fe reduction (Eh<0mV; Reddy
and DeLaune, 2008). Thus, our findings clearly showed redox-active
conditions in the Doce River estuary.

The more reduced physicochemical environment in the Doce River
estuary is associated with organic matter inputs due to the colonization
and growth of estuarine plants (i.e. Eleocharis acutangula and Typha
domingensis) over the deposited tailings after the disaster (Queiroz
et al., 2021b). These authors reported that after plants colonized the tail-
ings therewas significant input of organicmatter (via litterfall, roots ex-
udates, and dead roots) which favored the establishment of reducing
conditions. In addition to plant growth, the daily tidal flooding and



Fig. 4. Attenuated total reflection – Fourier-transform infrared spectroscopy (ATR-FTIR)
spectra of the tailings sample and samples collected in the Doce River estuary in 2015,
2017 and 2019.
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low O2 diffusion, would have driven the decrease in Eh values (Queiroz
et al., 2021a) and the anaerobic respiration pathways (e.g., microbial Fe
reduction).

The higher Eh values recorded in 2019 may also be attributed to the
effects of plant growth and root respiration (Rehman et al., 2017).
Moreover, vegetation growth stimulates the presence and activity of
fauna (e.g., bioturbation by crabs) in estuarine soils, further enhancing
diffusion of oxygen into the estuarine soils (Fondo and Martens, 1998;
Sarker et al., 2020). Crab burrows and bioturbation promote soil aera-
tion and increase the Eh values and, thus, the oxidation of Fe (Fe2+),
which re-precipitates as poorly crystalline Fe oxyhydroxides (Alongi,
2010; Ferreira et al., 2007b; Nielsen et al., 2003).

4.2. Changes in mineralogy over time

The mineralogical assemblage of the tailings from inside the dam
was predominantly composed of Fe oxyhydroxides and was clearly as-
sociated with the mined Fe-rich ore. The mine is located in the
“Quadrilátero Ferrífero” a geological formation of Palaeoproterozoic
banded iron formation (Itabirite) mainly composed of the Fe
oxyhydroxides identified (e.g., hematite and goethite; Cabral et al.,
2002; Silva et al., 2016; Gama et al., 2019). The XRD spectra showed
6

greater intensities and sharper peaks for the hematite and goethite in
the tailings, indicating higher crystallinity when compared to the
surface samples from the Doce River estuary (Schulze, 1981;
Schwertmann et al., 1982).

The higher MCS values (Table 2) for goethite (d110 plane: 56.14 nm,
d111 plane: 109.38 nm) in the tailings sample than in the estuary
samples (i.e., 2015, 2017, and 2019) corroborate a higher planes growth
and crystallinity in the tailings (Camêlo et al., 2017; Singh and Gilkes,
1992). According to Fontes andWeed (1991), highly crystalline goethite
with greater crystal development exhibits higher MCS values for the
d111 plane than the d110 plane, indicating preferential growth in the z
direction. Similarly, for hematite, the higher MCS for the d110 plane
also indicates greater crystal development (Melo et al., 2001).

On the other hand, the samples from the different years (2015, 2017,
and 2019; Fig. 3) showed XRD spectra indicative of a mineral assem-
blage mainly composed of lower crystalline Fe oxides with structural
disorders leading to less intense, broad peaks (Camêlo et al., 2018;
Cornell and Schwertmann, 2003). Thus, the lower intensity and broader
peaks of hematite (0.371, 0.269, 0.252, 0.184, and 0.157 nm) and goe-
thite (0.172, 0.193, 0.219, 0.245, 0.269, and 0.418 nm) in the samples
from 2015, 2017, and 2019 (Fig. 3) are probably associated with a
lower degree of crystallinity and/or loss of mineral phases (see Velde
and Peck, 2002; Wang et al., 2015).

Previous studies reported that a decrease in the degree of crystallin-
ity and/or loss of mineral phases results in lower values of MCS, more
structural defects and less intense, broader XRD peaks (Camêlo et al.,
2018; Fontes and Weed, 1991; Melo et al., 2001; Wang et al., 2015).
Moreover, the decrease in crystallinity may reflect a higher susceptibil-
ity of Fe oxyhydroxides to undergoing reductive dissolution due to an
increase both in surface area and structural disorder (see Larsen and
Postma, 2001; Cornell and Schwertmann, 2003).

The lower MCS values in samples from 2015, 2017, and 2019 are
supported by SEM micrographs (Fig. 5), which clearly showed smaller
particle sizes in these samples (< 20 nm). In addition, the SEM micro-
graphs of samples collected in 2015, 2017, and 2019 did not show the
typical morphology of goethite (acicular; Bigham et al., 2002) or hema-
tite (hexagonal and rhombohedral; Schwertmann et al., 2000), but
rather irregular particle morphologies, also indicating particle size
narrowing and ordination decay (see Schwertmann and Fitzpatrick,
1992; Gao and Schulze, 2010; Das and Hendry, 2014).

The structural disorder in the estuary samples was further corrobo-
rated by the ATR-FTIR results (Fig. 4). The more intense, sharper goe-
thite bands at 795 cm−1 and 1001 cm−1 are associated with higher
bending vibrations of OH, whichmay be a result of a structural disorder
promoted by Al-substitution or by partial mineral dissolution leading to
Fe displacement and more bonding of OH groups (Cornell and
Schwertmann, 2003; Faivre and Frankel, 2016; Ruan et al., 2002). In ad-
dition, the broadening and stretching of bands at 748 cm−1, at 681 to
676 cm−1, and at 1026 cm−1 (in 2015, 2017, and 2019; Fig. 4) also result
from OH stretching vibration, typical of poorly crystalline Fe
oxyhydroxides (Bazilevskaya et al., 2011, 2012). On the other hand,
smaller and slightly stretched bands of goethite and hematite at 3131
to 798 cm−1 and at 532 cm−1 in tailings samples (Fig. 4), were ob-
served. These band features are associated with fewer OH surface
groups and higher crystallinities. According to Ruan et al. (2002) a sys-
tematic decrease in the width of hematite and goethite bands results
from hydroxyl release and the changes in Fe-OH to FeO bonding after
thermal dihydroxylation, which leads to crystallization and crystal
growth.

In wetland soils, hydroxylation of Fe oxyhydroxides occurs due to
natural processes, mainly mediated by microorganisms and oscillations
in redox conditions (Jolivet et al., 2004; Kosolapov et al., 2004; Randall
et al., 1999). The Fe fractionation showed a significant and rapid shift
in the distribution of Fe oxides within few years in the Doce River estu-
ary. Thus, the data showed amarked increase in the poorly crystalline Fe
oxyhydroxides (i.e., FeFR+FeLP) between 2015 (6.8%), 2017 (36.3%)



Fig. 5. Scanning electron microscopy (SEM)micrographs of themine tailings from the Fundão dam and soil samples collected in the Doce River estuary. (A) Images from tailings samples
showing irregular particles of Fe oxyhydroxides. Images of soils from (B) 2015, (C) 2017, and (D) 2019 showing an irregular shape of Fe oxyhydroxides. (E) Chemical composition
determined by energy-dispersive X-ray spectroscopy (EDS) analysis of the samples and tailing.
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and 2019 (47%; Fig. 6). The clear loss of crystallinity is related to the ac-
tive redox conditions in the estuarine soil, which oscillated between re-
duced to moderately reduced conditions (see Fig. 2). Oscillations in
redox conditions occur due to tidal flooding (Seybold et al., 2002),
plant activity (Rehman et al., 2017), organic matter inputs to soil
(Reddy and DeLaune, 2008), O2 depletion (Du Laing et al., 2009) and
fauna activity (i.e., bioturbation;Otero et al., 2020). This active redox en-
vironment favored themicrobial reduction of Fe (Lovley, 1991) and the
subsequent oxidation of Fe2+ to Fe3+ and, thus, its re-precipitation as
poorly crystallinity Fe oxyhydroxides (Johnston et al., 2011; Lindsay,
1991; Zachara et al., 2001).

The microbial reduction of Fe consumes both the highly and poorly
crystalline Fe oxyhydroxides (Kukkadapu et al., 2001; Pan et al.,
2016). The Fe may be rapidly reprecipitated in the system on exposure
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toO2 due to lowering tides, fauna activity or root respiration (Chen et al.,
2018). Re-oxidation usually leads to precipitation of poorly crystalline
Fe oxyhydroxides due to low interfacial energies of nucleation of these
Fe minerals (Barcellos et al., 2018; Chen et al., 2018; Stumm and
Morgan, 1996). Our results are consistent with those reported by
Winkler et al. (2018) and Thompson et al. (2011), which showed that
the crystallinity of Fe oxyhydroxides decreased over time after redox cy-
cles. However, these authors reported the mineralogical changes in a
paddy soil and frequently waterlogged forest soils respectively, after
several decades of exposure to redox fluctuations.

The stability of reprecipitated, poorly crystalline Fe oxyhydroxides
may be enhanced in the presence of Al during the crystallization process
(isomorphic Al-substitution; Schwertmann, 1991; Violante et al., 2003).
Indeed, Al-substitution in poorly crystalline Fe oxyhydroxides increases



Fig. 6. Percentage of each solid phase fraction obtained by the sequential extraction
procedure in the mine tailings and in samples from the Doce River estuary, collected in
2015, 2017 and 2019. EX: exchangeable Fe, CA: Fe bound to carbonates, FR: Fe bound to
ferrihydrite, LP: Fe bound to lepidocrocite, CR: Fe associated with highly crystalline
oxyhydroxides (i.e., hematite and goethite), and PY: pyritic Fe.
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the mineral stability thus hampering reductive dissolution (Masue-
Slowey et al., 2011) which is an important implication for trace metals
bioavailability in redox-active environments, such as estuarine soils
and sediments (Gao et al., 2021; Palau et al., 2021). The higher stability
is associatedwith changes in structural orderingwith the fortification of
hydrogen bonds (Cornell and Schwertmann, 2003). Thus, despite the
active-redox environment, Al-substitution may contribute to the main-
tenance of poorly crystalline Fe oxyhydroxides in the soil over time.

4.3. Potential environmental implications

The clear shifts in the mineralogical characteristics of Fe
oxyhydroxides may have several important environmental implications
for the estuarine environment in the future. Iron oxyhydroxides are
known to play a role in metal retention (Hochella et al., 2005) due to
their small particle size, large surface area and corresponding high reac-
tivity (Buerge-Weirich et al., 2002; Herbert, 1996). Under oxic conditions,
Fe oxyhydroxides may retain heavy metals due to the formation of inner
or surface complexes such as monodentate surface hydroxo-complexes
or bi-nuclear internal complexes (Cornell and Schwertmann, 2003;
Grossl et al., 1994). These complexes are very stable and virtually irrevers-
ible, and they guarantee the low bioavailability of trace metals (Rose and
Bianchi-Mosquera, 1993; Trivedi and Axe, 2001). However under transi-
tory/cyclic anoxic conditions, Fe oxyhydroxides undergo reductive disso-
lution, which leads to a decrease in their stability and in their capacity to
retain metals (Herbert, 1996; Queiroz et al., 2021b).

Due to their smaller size (2–6 nm) and higher surface area (200 to
600 m2 g−1), the poorly crystalline Fe oxyhydroxides (Manceau et al.,
2000; Randall et al., 1999; Roden and Zachara, 1996) have a greater po-
tential to adsorb and immobilize both cationic and anionic species. In-
deed, several studies have reported the high capacity of poorly
crystalline Fe oxyhydroxides (e.g., ferrihydrite and lepidocrocite) to
promote the immobilization of heavy metals in different soils
(Baleeiro et al., 2018; Cornell and Schwertmann, 2003; Komárek et al.,
2013;Manceau et al., 2000;Martínez, 1998; Tack et al., 2006). Similarly,
P retention in poorly crystallinity Fe oxyhydroxides is also a widely re-
ported and well-known phenomenon (Arai and Sparks, 2001; Liao
et al., 2020; Slomp et al., 1996; Wang et al., 2013), which plays an im-
portant role in the eutrophication process (Kraal et al., 2015; Queiroz
et al., 2021a; Wilson et al., 2004).
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The poorly crystalline Fe oxyhydroxides are characterized by short-
range-order, surface imperfections and weak Fe-OH bonds, which
favor edge dissolution (Cornell and Schwertmann, 2003). With further
dissolution, the crystals gradually become smaller and have a higher
surface area (Larsen and Postma, 2001). These characteristics account
for the intense dissolution rate (Bonneville et al., 2004). In response to
these characteristics, the associated metals, including Fe, and phospho-
rus will become bioavailable (Schwertmann, 1991; Larsen and Postma,
2001; Queiroz et al., 2021b), thus posing a severe environmental risks
to the Doce River estuary. In fact, previous studies reported high con-
centrations of metals (Queiroz et al., 2018a, 2021a) and phosphorus
(Queiroz et al., 2021b) associated with the estuarine Fe oxyhydroxides.
Thus, the mineralogical changes caused by the active redox environ-
ment, such as the smaller particle size observed in SEM micrographs
(Fig. 5), lower MCS (Table 2), and decreased crystallinity (Figs. 4, 6),
confirm the higher susceptibility to mineral dissolution in the Doce
River estuarine soil. The mineral changes may lead to an increase in
the concentration of pollutants (e.g., metals and phosphorus) in the
soil and water from the Doce River estuary in the near future. Indeed,
Queiroz et al. (2021a, 2021b) recently reported an increase in phospho-
rus andmetal bioavailability associatedwith soil Fe loss due to reductive
dissolution.

5. Conclusions

The tailings from inside the Fundão dam were initially mainly com-
posed of highly crystalline Fe oxyhydroxides (e.g., goethite and hema-
tite). In 2015, after failure of the dam, the tailings were exposed to an
oscillating redox environment in the Doce River estuary. The new bio-
geochemical conditions decreased the crystallinity of Fe oxyhydroxides
between 2015 and 2019. Our findings reveal a rapid change (within
four years) in the mineralogical assemblage. The mineralogical shifts
were driven by the microbial-mediated reductive dissolution, plant
growth, root respiration and fauna activity. Within this period, the
data showed a change from a dominance (92%) of highly crystalline Fe
oxyhydroxides (goethite and hematite) to a greater presence (47%) of
poorly crystallinity Fe oxyhydroxides (e.g., lepidocrocite and ferrihy-
drite) with smaller particle size (from 109 nm to 49 nm for goethite,
d111 direction) and higher reactivity.

The decreased crystallinity of Fe oxyhydroxides led to the min-
erals becoming more susceptible to dissolution. These changes de-
creased the capacity of the minerals to retain both cationic and
anionic elements (e.g., metals and phosphorus), thereby potentially
increasing the concentration of these pollutants in estuarine soils
and waters.
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