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SUMMARY

Olfactory neurons project their axons to spatially in-
variant glomeruli in the olfactory bulb, forming an or-
dered pattern of innervation comprising the olfactory
sensory map. A mirror symmetry exists within this
map, such that neurons expressing a given receptor
typically project to one glomerulus on the medial face
and one glomerulus on the lateral face of the bulb.
The mechanisms underlying an olfactory neuron’s
choice to project medially versus laterally remain
largely unknown, however. Here we demonstrate
that insulin-like growth factor (IGF) signaling is re-
quired for sensory innervation of the lateral olfactory
bulb. Mutations that eliminate IGF signaling cause
axons destined for targets in the lateral bulb to shift
to ectopic sites on the ventral-medial surface. Using
primary cultures of olfactory and cerebellar neurons,
we further show that IGF is a chemoattractant for
axon growth cones. Together these observations re-
veal a role of IGF signaling in sensory map formation
and axon guidance.

INTRODUCTION

In sensory systems, ordered patterns of neuronal connections

represent information about complex stimuli from the external

world. In the visual system, for example, retinal ganglion cells

form a point-to-point topographic map in their projection to tha-

lamic or midbrain structures, representing information about the

position of the stimulus in visual space (McLaughlin and O’Leary,

2005). Similarly, sensory neurons in the somatosensory and audi-

tory systems maintain neighbor relationships when projecting to

the thalamus, resulting in a spatial map of the body surface or

sound frequency, respectively (Killackey et al., 1995; Rubel and

Fritzsch, 2002). In contrast, the projection of primary olfactory

sensory neurons to their first relay in the brain comprises a
discontinuous map; neurons expressing a given odorant recep-

tor, while distributed broadly in the peripheral sensory epithelium

(Ressler et al., 1993; Vassar et al., 1993), converge to discrete and

spatially invariant glomeruli in the olfactory bulb (Mombaerts

et al., 1996; Mori et al., 2006; Ressler et al., 1994; Vassar et al.,

1994). The pattern of these convergent connections forms the an-

atomical basis for the olfactory sensory map. This sensory map

displays a mirror symmetry, such that odorant receptor-specific

neurons typically extend their axons to one glomerulus in the me-

dial hemisphere and another glomerulus in the lateral hemisphere

of the olfactory bulb (Mombaerts et al., 1996; Nagao et al., 2000;

Ressler et al., 1994; Vassar et al., 1994).

How is the olfactory sensory map established during develop-

ment? Olfactory neurons express just one odorant receptor allele

from a repertoire of�1000 odorant receptor genes (Chess et al.,

1994). The selection of an odorant receptor gene not only deter-

mines the specificity of the cell for odorants, but also influences

the targeting of its axon in the olfactory bulb (Feinstein and Mom-

baerts, 2004; Imai et al., 2006; Mombaerts et al., 1996; Wang

et al., 1998). While the odorant receptor plays a critical role in

determining the projection pattern of olfactory sensory axons, it

does not appear to be the sole determinant of glomerular position

(Imai et al., 2006; Mombaerts et al., 1996; Wang et al., 1998).

Thus, the formation of the olfactory sensory map is thought to

involve a hierarchy of cues and axon guidance decisions, which

together function to direct the axons of neurons expressing the

same odorant receptor to common targets in the olfactory bulb

(Lin and Ngai, 1999; St John et al., 2002). However, numerous

studies addressing the role of classical axon guidance cues

and cell adhesion molecules in the developing olfactory system

have yet to provide a complete understanding of how the stereo-

typed glomerular map is formed with such precision (Cho et al.,

2007; Cutforth et al., 2003; Imai et al., 2006; Montag-Sallaz

et al., 2002; Puche et al., 1996; Schwarting et al., 2000; Serizawa

et al., 2006; Tisay et al., 2000; Treloar et al., 1997; Walz et al.,

2002, 2006) (reviewed in Imai and Sakano, 2007; Mombaerts,

2006).

In the present study, we examine the role of insulin-like growth

factor (IGF) signaling in axon guidance using the developing
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olfactory system as our primary model. The IGF family of signal-

ing effectors includes two secreted polypeptide ligands, IGF1

and IGF2, which bind to and activate a common receptor

tyrosine kinase, the type 1 IGF receptor (IGF1R) (Efstratiadis,

1998). Developmentally, IGF signaling plays an important role

in determining body size by promoting cell proliferation and

survival (Efstratiadis, 1998); null mutations in Igf1, Igf2, or Igf1r

in mice result in severe growth deficiency phenotypes (Baker

et al., 1993; DeChiara et al., 1990; Liu et al., 1993). In the nervous

system, IGF signaling apparently mediates neuronal survival and

proliferation (Beck et al., 1995; Chrysis et al., 2001; Ye et al.,

1996). In addition, IGF signaling has recently been shown to reg-

ulate growth cone expansion (Laurino et al., 2005), promote axon

outgrowth in corticospinal neurons (Ozdinler and Macklis, 2006),

and play a role in establishing neuronal polarity in cultured hippo-

campal neurons (Sosa et al., 2006). Thus, a role for IGF signaling

in neuronal patterning is beginning to emerge that is distinct from

the classical view of IGFs as growth-promoting factors. It re-

mains unclear, however, whether IGFs play a wider role in

neuronal patterning or serve as instructive cues affecting axon

guidance and axon targeting decisions.

Here we describe results indicating that both IGF1 and IGF2 are

expressed by cells in and surrounding the olfactory bulb, whereas

IGF1R is expressed in a complementary fashion on olfactory

sensory axons. Using a series of IGF mutant mice, we show

that the loss of IGF signaling causes a severe misrouting of olfac-

tory sensory axons away from the lateral olfactory bulb to ectopic

ventral-medial positions, resulting in a dramatic perturbation of

the mirror-symmetric olfactory sensory map. We further demon-

strate that IGF1 can act as a chemoattractant for growth cones of

cultured olfactory neurons as well as cultured cerebellar granule

neurons. These data demonstrate the importance of IGF signal-

ing in the formation of the olfactory sensory map, and suggest

a general role of IGFs as instructive axon guidance cues.

RESULTS

IGF Ligands and Their Receptor Are Expressed
in Complementary Patterns in the Developing
Olfactory System
We previously performed a microarray-based screen to identify

candidate genes expressed in the olfactory bulb that could act

to guide olfactory axons to their target glomeruli (Lin et al.,

2004). One candidate signaling pathway identified by this screen

was the IGF signaling pathway. To characterize further the IGF

signaling components in the olfactory system, we performed

immunohistochemistry on the developing olfactory system at

embryonic (E) day 14.5 and 18.5 for IGF1, IGF2, and IGF1R. At

E14.5, IGF1 is expressed circumferentially in the developing

bulb, just within and in close apposition to the developing olfac-

tory nerve layer (Figure 1A). Interestingly, at rostral positions

there appears to be a gradient of IGF1 along the medial-lateral

axis, such that expression is higher in the lateral portion of the

olfactory bulb. This gradient of expression diminishes and even-

tually reverses to display a medial > lateral bias more caudally.

Localization of olfactory marker protein (OMP), a marker for all ol-

factory neurons and their axons, reveals a corresponding pattern

of olfactory sensory innervation at this stage of development.
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The medial-lateral gradient of IGF1 expression is not readily de-

tectable at E15.5 (data not shown), and by E18.5 IGF1 localizes

to the mitral cell and glomerular layers (which are more distinct at

this stage) throughout the olfactory bulb (Figure 1B).

Consistent with previous RNA in situ hybridization results (Lin

et al., 2004; Stylianopoulou et al., 1988), IGF2 protein is ex-

pressed in the leptomeninges surrounding the bulb. The highest

expression is in the dorsal region (seen as diffuse staining at

E14.5, becoming more discrete by E18.5), whereas expression

is diminished in the rostral-ventral region (Figures 1A and 1B).

Cells of the cribriform plate also express IGF2 (bracket in

Figure 1B), where it may interact with olfactory sensory axons

as they traverse this structure en route to the olfactory bulb.

Together these observations confirm that the two known IGF

ligands are expressed in locations in which they could interact

with olfactory sensory axons entering the olfactory bulb.

In order for olfactory neurons to respond to olfactory bulb-de-

rived IGF signals, these cells must express IGF1R, the receptor

mediating both IGF1 and IGF2 signaling. Similar to previous

observations in the rat olfactory epithelium (Ferrari et al., 2003;

Suzuki and Takeda, 2002), at E14.5 we found IGF1R to be ex-

pressed in immature and mature olfactory neurons, as well as

in the underlying sensory axon fascicles (Figure S1 available on-

line), showing no obvious restrictions along the three principle

axes (medial-lateral, dorsal-ventral, or rostral-caudal) of the

olfactory epithelium (Figure 1A). IGF1R is also present within

the olfactory bulb nerve layer at E14.5 (data not shown), and

IGF1R-positive axons can be observed entering the glomerular

layer by E18.5 (Figure 1B). Thus, the olfactory sensory axons

express IGF1R, which presumably makes them able to respond

to IGF cues found in the olfactory bulb as they grow into and

innervate this structure.

IGF Signaling Is Required for the Normal Projection
of Olfactory Sensory Axons in the Olfactory Bulb
The complementary expression of IGF ligands in the olfactory

bulb and IGF1R in olfactory sensory axons suggests a role for

IGF signaling in the projection of primary sensory axons in the

olfactory bulb. We tested this hypothesis by evaluating the pro-

jection patterns of olfactory sensory neurons in mice harboring

a targeted deletion in the Igf1r gene (Liu et al., 1993). To facilitate

the visualization of olfactory sensory axons, we examined mice

expressing a tau:lacZ fusion protein in all olfactory neurons un-

der the control of the OMP promoter (Mombaerts et al., 1996).

The innervation of the olfactory bulb by olfactory neurons was

visualized by immunohistochemical staining using an anti-

b-galactosidase antibody. Because homozygous Igf1r�/� mu-

tants die immediately after birth (Liu et al., 1993), the olfactory

projection pattern was assessed at embryonic stages, when

some, but not all, glomeruli have formed. Staining for b-galacto-

sidase in coronal tissue sections from embryos as early as E15.5

demonstrates a striking defect in Igf1r�/� mice compared with

control Igf1r+/+ or Igf1r+/� littermates. Whereas olfactory axons

in control mice project to and innervate the entire circumference

of the olfactory bulb, homozygous mutant mice show a marked

decrease in innervation of the lateral face of each bulb (compare

Figure 2A and 2B). Similar results were observed at E18.5 (com-

pare Figure 2C and 2D), as well as at E16.5 and E17.5 (data not
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Figure 1. IGF Signaling Components Are Expressed in the Developing Olfactory System

(A) Representative coronal tissue sections from the rostral, center, and caudal regions of the olfactory bulb and epithelium of E14.5 mice were labeled with IGF1,

IGF2, IGF1R, or olfactory marker protein (OMP) antibodies. IGF1, IGF2, and OMP immunoreactivity (green) is shown from representative adjacent tissue sections

taken at each position along the rostral-caudal axis. At this stage, IGF1 localizes in each bulb immediately inside the olfactory nerve layer (likely in the developing

mitral cell and glomerular layers), showing a slight lateral > medial bias in expression rostrally and a pronounced medial > lateral bias caudally. IGF2 immuno-

reactivity is observed both in the overlying skin and in the leptomeninges of the olfactory bulb, with an exclusion from the ventral bulb. OMP expression—reflect-

ing the disposition of the olfactory sensory axons in the olfactory nerve layer—reveals innervation roughly approximating the location of IGF1 in underlying bulb

structures. In the olfactory epithelium, IGF1R is localized to immature and mature olfactory neurons throughout the olfactory sensory epithelium, and to the

underlying olfactory axon fascicles (see Figure S1).

(B) Coronal tissue sections of olfactory bulbs from E18.5 animals were analyzed by immunohistochemistry for IGF1, IGF2, and IGF1R expression. IGF1 is

expressed in the mitral cell layer (MCL) and glomerular layer (GL) of the olfactory bulb. IGF2 is found in the leptomeninges (Mn) surrounding the bulb as well

as in the bone of the cribriform plate (CP and bracket). Note that the expression of IGF2 in the leptomeninges does not completely surround the bulb in this tissue

section. IGF1R localizes to the olfactory neuron axons within the olfactory nerve layer (ONL) and within the glomerular layer (GL). Nuclei of cells were visualized

with Hoechst 33342 (blue). Dorsal is to the top in all panels; medial is to the right in (B).

Scale bar, 200 mm in (A) and 100 mm in (B).
shown). Analysis of serial tissue sections collected along the ros-

tral-caudal axis reveals the paucity of lateral innervation through-

out the olfactory bulb in Igf1r�/� mice, although this effect

is somewhat less pronounced at rostral-most positions

(Figure S2). By contrast, in wild-type animals the entire circum-

ference of the olfactory bulb is innervated, with a slight bias

toward the lateral face in the rostral bulb (Figure S2).

The appearance of the observed innervation defect relatively

early in the development of the olfactory projection (E15.5)

suggests that IGF signaling is required for the initial innervation

of the lateral olfactory bulb. The phenotype appeared to be fully

penetrant and was observed in 2/2 mutants at E15.5 (compared

with 3 heterozygous control littermates), 2/2 mutants at E16.5

(2 heterozygous controls), 1/1 mutant at E17.5 (2 heterozygote

controls), and 13/13 mutants at E18.5 (6 wild-type or heterozy-

gous controls). In Igf1r�/�mice examined at more advanced em-

bryonic stages, the olfactory bulbs appeared to be somewhat

compressed along the dorsal-ventral axis (Figure 2D and

Figure S2). Nonetheless, the dramatic decrease of lateral inner-

vation remained a consistent feature in mutant olfactory bulbs,
with the olfactory sensory axons appearing to accumulate along

the ventral-medial region of the olfactory bulb.

Compensation of Olfactory Bulb Innervation
Defects in Igf1 or Igf2 Mutants
The results described above demonstrate the necessity of IGF

signaling for the innervation of the lateral face of the olfactory

bulb by olfactory sensory axons. We next wished to determine

which of the two IGF ligands is responsible for directing the

axons to the lateral olfactory bulb. Based on the lateral > medial

bias in IGF1 expression observed in the olfactory bulb at E14.5, it

seemed plausible that IGF1 could be required for the innervation

of the lateral olfactory bulb. To test this idea, we examined the

projection of olfactory neurons in bulbs from mutant mice lacking

either the Igf1 or Igf2 gene. Olfactory axons were localized using

an anti-OMP antibody in Igf1�/�, Igf2�/�, or heterozygous litter-

mate controls at E18.5 (Figure 3). In both Igf1 and Igf2 single null

mutants, the pattern of sensory axon innervation in the olfactory

bulb was essentially indistinguishable from controls (n = 5 mice

for Igf1�/�; n = 2 for Igf2�/�).
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A straightforward and testable hypothesis explaining the dif-

ference between the Igf1r null phenotype and the lack of muta-

tional consequences in the absence of either IGF ligand is that

each of the ligands can compensate for the lack of the other.

When we analyzed the innervation of olfactory bulbs in the

Igf1�/�; Igf2�/� double mutant, we obtained results consistent

with this hypothesis. As shown in Figure 3E, lateral innervation

of the olfactory bulbs is dramatically decreased in the Igf1�/�;

Igf2�/� double mutant, to an extent similar to that of the Igf1r�/�

null phenotype (n = 2 mice for Igf1�/�; Igf2�/�). Thus, elimination

of IGF signaling—either by genetically ablating both known IGF

ligands or their common receptor—leads to the redistribution

of olfactory sensory axons away from the lateral olfactory bulb

toward the ventral-medial face.

Absence of IGF Signaling Causes Aberrant Targeting
of Olfactory Sensory Neurons
Each olfactory bulb normally exhibits mirror symmetry, such that

olfactory neurons expressing a given odorant receptor typically

project their axons to two glomerular targets: one on the lateral

face and one on the medial face of the olfactory bulb (Mombaerts

et al., 1996; Nagao et al., 2000; Ressler et al., 1994; Vassar et al.,

1994). The reduction of lateral innervation in the olfactory bulbs

from both Igf1r and Igf1; Igf2 null mutants suggests that IGF sig-

naling has a role in forming the mirror symmetry inherent in the

olfactory sensory map. In one hypothesis, IGF signaling guides

a subset of olfactory axons to the lateral bulb. Alternatively,

IGF signaling does not function in the process of axon guidance,

but rather provides trophic support with differential effects on

Figure 2. Innervation of the Lateral Olfactory Bulb Is Severely

Reduced in the Absence of IGF Signaling

Anti-b-galactosidase staining (green) of coronal sections from heads of OMP-

IRES-tau:lacZ; Igf1r+/� (A and C) and OMP-IRES-tau:lacZ; Igf1r�/� (B and D)

mice reveal a deficiency in olfactory axon targeting to the lateral face of the

olfactory bulb during development of the Igf1r�/� animals. (A and B) E15.5

animals show that at this early stage of olfactory map formation, the absence

of IGF signaling perturbs the symmetry of ORN projections to the medial and

lateral olfactory bulb (compare [A] [heterozygous control] with [B] [Igf1r null

mutant]). (C and D) A comparison at E18.5 shows a similar lack of innervation

of the lateral face of the olfactory bulb in the Igf1r null mutant (D) compared

with the control (C). Nuclei were stained with Hoechst 33342 (blue). Scale

bar, 100 mm.
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subpopulations of olfactory neurons. In this latter scenario, neu-

rons extending axons to the lateral olfactory bulb are more de-

pendent on IGF signaling for their survival than medially directed

neurons. It has been shown, for example, that IGF signaling acts

as a trophic factor for some neurons in vitro (Vincent et al., 2004)

and in vivo (Chrysis et al., 2001; Ye et al., 1996). Thus, the loss of

sensory axon innervation in the lateral portion of the olfactory

bulb could be caused by the death of laterally projecting neurons

before or soon after their projections reach the bulb. We rea-

soned that if laterally projecting cells die prematurely in the

absence of IGF signaling, an olfactory neuron population ex-

pressing a single odorant receptor would form only the medial

glomerulus instead of forming the usual pair of glomeruli.

To discriminate between these two hypotheses, we examined

the projection pattern of olfactory neurons expressing the same

odorant receptor, receptor P2. Axons projecting from cells ex-

pressing the P2 odorant receptor were visualized immunohisto-

chemically using mice harboring an IRES-tau:lacZ insertion at

the P2 locus (Mombaerts et al., 1996). Sections of olfactory bulbs

from E18.5 mice wild-type (data not shown) or heterozygous at

the Igf1r locus were stained for b-galactosidase and showed

a normal projection pattern of P2 olfactory neurons; axons

formed glomeruli on both the medial and lateral faces of the ol-

factory bulb, a few hundred microns apart along the rostral-cau-

dal axis (Figures 4A and 4B). On the other hand, in E18.5 Igf1r�/�

Figure 3. Effects of Targeted Mutations in the Igf1 and Igf2 Genes on

Olfactory Bulb Innervation

Immunolocalization of OMP expression (green) in coronal sections at E18.5 re-

veals that Igf1 and Igf2 single nullizygous mice do not have significant olfactory

patterning defects (compare [A] with [B] and [C] with [D]). However, the elimi-

nation of both Igf1 and Igf2 in the Igf1�/�; Igf2�/� mutant results in a severe

decrease in innervation of the lateral olfactory bulbs, similar to the phenotype

seen in the Igf1r nullizygote (compare [E] to Figure 2D). Cell nuclei were stained

with Hoechst 33342 (blue). Scale bar, 100 mm.



Neuron

IGF Signaling in Axon Guidance
Figure 4. Misrouting of Odorant Receptor-Specific Olfactory Axons in the Absence of IGF Signaling

To localize the glomeruli of one class of odorant-receptor-specific olfactory axons, E18.5 P2-IRES-tau:lacZ mice either heterozygous (A and B) or nullizygous (C

and D) at the Igf1r locus were stained with an anti-b-galactosidase antibody (green). (A and B) In Igf1r+/�mice, P2 neurons project to two glomeruli per olfactory

bulb, one on the lateral (A) and, more caudally, one on the medial (B) face of the bulb. The position of these glomeruli is stereotyped between animals. (C and D) P2

neurons still form two glomeruli in the Igf1r nullizygous background. However, the lateral glomerulus (C) is shifted toward the medial hemisphere of the bulb,

resulting in a distortion of the medial-lateral mirror symmetry of olfactory bulb innervation. Dashed white lines demarcate the midlines of each bulb. Note that

in this particular individual, the lateral glomerulus in the right-hand bulb has shifted well beyond the midline. The medial glomeruli in the Igf1r nullizygote (D)

appears to be in a position similar to that observed in the control (B), with only a small dorsomedial shift, which is likely due to the compression of the map into

a smaller area of the bulb’s surface. In this example, the medial P2 axons form a doublet in the right bulb (D), a common phenomenon seen with this glomerulus

(Royal and Key, 1999). Images of the left and right bulb are combined for clarity. Nuclei were stained with Hoechst 33342 (blue). Scale bar, 100 mm.
littermates the axons from P2 neurons failed to extend into the

lateral half of the bulb, and instead formed a glomerulus in the

ventral-medial region (e.g., left bulb in Figure 4C). In some cases

the position of the lateral glomerulus was shifted beyond the

midline, into the medial half of the bulb (e.g., right bulb in Fig-

ure 4C). More caudal sections containing the medial P2 glomeruli

revealed a slight shift in the position of these glomeruli in the

Igf1r�/� bulb to more dorsal positions (Figure 4D), which was

most likely due to the compression of the total sensory axon

projection onto a smaller area of the olfactory bulb.

Similar results were obtained from seven P2-IRES-tau:lacZ;

Igf1r�/� mice (versus six littermate controls). To quantitate this

effect, we measured the positions of the P2 medial and P2 lateral

glomeruli along the medial-lateral axis of the olfactory bulb,

where in a given section containing a P2 glomerulus, 0 corre-

sponds to the medial margin of the mitral cell layer and 1.0 cor-

responds to the lateral margin of the mitral cell layer (Cutforth

et al., 2003); a value of 0.5 approximates the midline of the olfac-

tory bulb in each section. Using this metric, we found that the P2

medial glomerulus position was 0.08 ± 0.08 in control (wild-type

or heterozygous) mice (mean ± SEM; n = 13 glomeruli), com-

pared to –0.003 ± 0.02 in the mutant (n = 6); this difference is

not statistically significant (two-tailed t test: p = 0.48). By con-

trast, the P2 ‘‘lateral’’ glomerulus on average was shifted beyond

the bulb midline in the Igf1r�/� background (position = 0.38 ±

0.09, n = 6), which is significantly different from the position mea-

sured in control animals (1.05 ± 0.03, n = 6; p < 0.00004). These
observations indicate that the olfactory axon patterning defect in

Igf1r�/�mice is due to the misrouting of axons to ventral-medial

locations in the bulb, and is not due to the catastrophic loss of

laterally projecting neurons.

IGF Can Serve as a Chemoattractant for Axon Growth
Cones of Olfactory and Cerebellar Neurons
Our genetic evidence has revealed an unexpected role of IGF

signaling in the patterning of sensory axon connections in the

olfactory bulb. From these in vivo studies, however, it is unclear

whether IGF acts as an instructive cue that directs the migration

of olfactory axon growth cones, or alternatively functions indi-

rectly to shape the olfactory sensory projection. To distinguish

between these possibilities, we assessed the effects of IGF on

axon growth cone migrations in cultured olfactory neurons. Ol-

factory neurons were isolated from neonatal rats and cultured

for 24–48 hr. Cells were then transferred to serum-free medium,

and actively migrating growth cones were identified and se-

lected to test the action of IGF1 delivered from a pressure-injec-

tion pipette (Zheng et al., 1994). As shown in Figures 5A–5C,

growth cones were attracted to a gradient formed by a localized

source of 200 mg/ml (26 mM) IGF1 (24� ± 5.1� [mean ± SEM],

n = 12 growth cones scored). Under the conditions of this assay,

the initial concentration of ligand at the growth cone is roughly

1/1000 the concentration in the pipette (Zheng et al., 1994), or

26 nM. This concentration corresponds to �10 3 Kd of IGF1

for IGF1R (Jones and Clemmons, 1995); thus, the observed
Neuron 57, 847–857, March 27, 2008 ª2008 Elsevier Inc. 851
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effects occurred within the upper physiological range of IGF1/

IGF1R action. The responses to IGF1 were significantly different

from growth cone responses to a phosphate-buffered saline

(PBS) control (�0.19� ± 3.5�, n = 13; two tailed t test: p < 0.001).

It is possible that the observed attraction of olfactory neuron

growth cones to IGF1 is due to increased rates of axon growth,

and not the turning of growth cones per se. To address this pos-

sibility we calculated the net growth of the same axons used in

Figure 5. IGF1 Is a Chemoattractant for Growth Cones of Olfactory

Receptor Neurons In Vitro

Growth cone turning assays were performed on cultured olfactory neurons

isolated from neonatal rats.

(A) Images of representative olfactory receptor neuron growth cones before

and after exposure to a gradient of IGF1 (200 mg/ml) or PBS solution (left-

hand panels). Arrows indicate the direction of the micropipette. Scattered

points in the right-hand panel depict the final positions of growth cones. Scale

bar, 10 mm.

(B) Cumulative distribution of growth cone turning angles, showing attraction of

growth cones to IGF1. PBS control: n = 13 growth cones scored; IGF1: n = 12.

(C) Mean turning angle (left) and neurite extension rate (right) in response to

IGF1 and PBS. Responses under these two conditions were significantly

different with regard to turning angle (two tailed t test: p < 0.0001) but not

neurite extension rate (p = 0.31). Error bars = SEM.
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the calculations of turning angles shown in Figures 5B and 5C.

We found no differences in the growth of axons exposed to

PBS or IGF1 (p = 0.31; Figure 5C). Thus, under these assay con-

ditions IGF1 can elicit olfactory neuron growth cone attraction

independent of any effect on axon growth rate. These results

indicate that IGF functions as a chemoattractant to instruct the

trajectory of growing olfactory axons.

To determine whether IGF can serve more generally as a che-

moattractant cue for other neuronal cell types, we examined the

effects of IGF1 on cultured cerebellar granule cells. Cerebellar

granule neuron cultures are a well-established system for the

evaluation of the activity of secreted proteins on axon guidance

and for the elucidation of the signaling mechanisms underlying

growth cone responses to such cues (Li et al., 2005; Xiang

et al., 2002). Moreover, the relative ease of culturing cerebellar

granule neurons (as compared with olfactory neurons) provides

an opportunity to dissect the intracellular events downstream

of IGF signaling. To perform the assays, granule neurons were

isolated from rat cerebellum at postnatal (P) day 0 and placed

in culture for 12–24 hr. Cells were then transferred to IGF-free

medium for 30 min prior to exposure to a gradient generated

by a point source of IGF1 (Zheng et al., 1994). Similar to our ob-

servations with cultured olfactory neurons, granule neuron

growth cones were attracted to a gradient formed by a localized

source of 20 mg/ml (2.6 mM) IGF1 (9.4� ± 1.8�, n = 42 growth

cones scored; Figures 6A–6C). The turning of growth cones in re-

sponse to IGF is dose-dependent, as elevating the concentration

of IGF1 to 200 mg/ml in the source pipette increased the turning

angle to 13.3� ± 4.4� (n = 35; Figures 6A–6C). These responses

were significantly different from growth cone responses to PBS

(�1.3� ± 1.7�, n = 31; two tailed t test: p < 0.0001 for 20 mg/ml

IGF1 versus PBS and p < 0.01 for 200 mg/ml IGF1 versus PBS).

PI3 kinase is a downstream target of IGF1R (Yamamoto et al.,

1992); among other actions, it appears to mediate the activity of

multiple axon guidance cues (Ming et al., 1999; Song and Poo,

1999). We therefore asked whether the observed attraction of

granule neuron growth cones to IGF1 is PI3 kinase-dependent,

using two different approaches. First, we determined whether

Akt, a direct downstream target of PI3 kinase (Yamamoto et al.,

1992), is phosphorylated in response to IGF1. Serum-starved cul-

tures of cerebellar granule neurons were treated with different

concentrations of IGF1 (2, 20, or 200 ng/ml) for 30 min, and the

presence of phosphorylated Akt was evaluated by western blot-

ting using an anti-phospho-Akt antibody. As shown in Figure 6E,

IGF1 elicited a dose-dependent increase in phospho-Akt, indi-

cating that PI3 kinase is indeed activated by IGF1 in these cells.

In a second experiment, we measured growth cone turning

responses to IGF1 in the presence of LY294002, a specific PI3

kinase inhibitor. We observed that growth cones did not show

any attraction to 200 mg/ml IGF1 with 10 mM LY294002 present

in the culture medium (Figures 6B and 6C; turning angle = –2.3� ±

2.4�, n = 26; p > 0.7 compared with PBS control), demonstrating

that the attraction of growth cones to IGF1 is dependent on PI3

kinase signaling. Finally, we found no differences in the growth

of axons exposed to PBS, low or high levels of IGF1, or IGF1 in

the presence of LY294002 (Figure 6D). Thus, under these assay

conditions IGF1 can elicit growth cone attraction independent

of any effect on axon growth rate. Together these results indicate
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Figure 6. IGF1 Is a Chemoattractant for Cerebellar Granule Neuron Growth Cones In Vitro

Growth cone turning assays were performed on cultured rat cerebellar granule neurons. Actively migrating growth cones were exposed to a gradient of IGF1 from

a point source set at an initial 45� angle.

(A) Scatter plots showing the relative angle (x axis) and total neurite extension (y axis) of individual growth cones following exposure to PBS, 20 mg/ml IGF1, or

200 mg/ml IGF1, as indicated. For each plot, the origin corresponds to the center of the growth cone at the beginning of the experiment, and the direction of the

gradient is indicated with an arrow.

(B) Cumulative distribution of turning angles, showing that growth cones are attracted to a gradient of IGF1 in a dose-dependent manner when compared with

PBS control, and that this attraction is abolished in the presence of the PI3 kinase inhibitor LY294002. PBS control: n = 31 growth cones assayed; 20 mg/ml IGF1:

n = 42; 200 mg/ml IGF1: n = 35; 200 mg/ml IGF1 + 10 mM LY294002: n = 26.

(C) Quantitation of the data shown in (A) demonstrates that the attraction of growth cones to IGF1 is statistically significantly different as compared with control

(PBS; see text for details). Inhibition of PI3 kinase with LY294002 results in a significant reduction in IGF1-mediated attraction. Error bars = SEM.

(D) Measurement of net extension of the same growth cones over a 30 min period shows no effect of IGF1 on neurite outgrowth under these assay conditions.

Error bars = SEM.

(E) Western blotting for phospho-Akt, a downstream target of IGF1R/PI3 kinase, reveals a dose-dependent accumulation of phosphorylated Akt in response to

IGF1 in cerebellar granule cells (top panel). An anti-actin blot from the same gel serves as a loading control (bottom panel). Lane 1, no IGF1; lane 2, 2 ng/ml IGF1;

lane 3, 20 ng/ml IGF1; lane 4, 200 ng/ml IGF1.
that IGF can serve as a chemoattractant cue for growth cones of

both olfactory neurons and cerebellar granule neurons, suggest-

ing a general role of IGF signaling in axon guidance.

DISCUSSION

IGF Signaling Guides the Formation
of the Olfactory Sensory Map
In the present study, we identify IGF signaling as an important

determinant in the development of the olfactory sensory map.
Specifically, IGF signaling is required for the correct positioning

of glomeruli in the lateral olfactory bulb. In IGF mutants, glomeruli

normally positioned in the lateral half of the bulb are shifted to

ventral-medial locations. The abnormal accumulation of fibers

in the ventromedial bulb suggests a rotation and compression

of the sensory map from dorsal-lateral positions toward the ven-

tral midline. We interpret these observations to suggest that IGF-

mediated signaling in the ingrowing olfactory axons is required

for their proper innervation in the olfactory bulb. This view should

be tempered by the possibility that the olfactory phenotype of
Neuron 57, 847–857, March 27, 2008 ª2008 Elsevier Inc. 853
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IGF mutants is due instead to indirect effects that lead second-

arily to axonal misrouting. For example, loss of IGF signaling

could cause a change in gene expression within the olfactory

neurons, causing them to respond differently to target-derived

axon guidance cues. Alternatively, the misplacement or absence

of cells in specific bulb regions could result in the absence of

innervation where such cells are missing. It should be noted,

however, that the convergence of olfactory sensory axons to

both medial and lateral sites can occur in mouse mutants in

which olfactory bulb neurons are either missing or disorganized

(Bulfone et al., 1998; Royal et al., 2002; St John et al., 2003).

Moreover, we found that IGF1 can serve as a chemoattractant

for growth cones of cultured olfactory neurons, consistent with

the notion that IGF is acting directly on olfactory axons in vivo.

IGF Signaling and Axon Guidance
It is generally thought that the IGFs function predominantly as

growth-promoting factors (Efstratiadis, 1998). Although a loss

of cells in specific brain nuclei and axons of certain nerve tracts

has been observed in an Igf1�/�mutant (Beck et al., 1995), there

has been no clear evidence to suggest effects on neuronal pat-

terning that are not secondary to perturbations in cell prolifera-

tion or cell survival. Nonetheless, a recent study has demon-

strated that the axons forming the corticospinal tract are

dependent on IGF signaling for growth; IGF1 applied to neurons

in culture stimulated the rate of axon extension, and inhibition of

IGF1R with a function-blocking antibody in vivo perturbed axon

outgrowth (Ozdinler and Macklis, 2006). Here we extend these

findings by showing an unexpected role for IGF signaling in

axon guidance. In the olfactory system, disruption of IGF signal-

ing causes a dramatic misrouting of axons normally destined to

innervate the lateral olfactory bulb. We further show that IGF

functions as a chemoattractant for growth cones of cultured ol-

factory neurons and cerebellar granule neurons, independent of

any effect IGF may have on promoting axon outgrowth. We hy-

pothesize that IGFs have the potential to serve more broadly

as instructive cues that guide the migrations of growing axons

in the developing nervous system. Indeed, PI3 kinase, a down-

stream effector of IGF signaling through IGF1R (Yamamoto

et al., 1992), has been shown to mediate growth cone turning

in response to a variety of axon guidance cues (Song and Poo,

1999).

From our present studies it is not entirely clear whether olfac-

tory axons projecting to the lateral olfactory bulb depend on IGF

signaling for axon outgrowth, as in the corticospinal tract (Ozdin-

ler and Macklis, 2006). However, we never observe axons stalled

outside of the olfactory bulb in IGF mutants (e.g., see Figure 2),

and a close examination of P2 axon trajectories indicates that

axon outgrowth is not inhibited in IGF mutants. In wild-type

mice, P2 axons entering the bulb through openings in the lateral

cribriform plate turn laterally and extend toward their target glo-

merulus (Figure 7C). In contrast, P2 axons crossing the lateral

cribriform plate appear to turn medially upon entering the bulb

in the Igf1r�/�mutant, and extend across the bulb’s ventral sur-

face to form a misplaced glomerulus (Figure 7D). In both cases

the labeled axons traverse a comparable distance after entering

the olfactory nerve layer, suggesting that IGF signaling is not

strictly required for the outgrowth of olfactory axons.
854 Neuron 57, 847–857, March 27, 2008 ª2008 Elsevier Inc.
Mechanisms of Olfactory Sensory Map Formation
The stereotypic nature of the olfactory sensory map suggests

that the precise convergence and targeting of sensory axons in

the olfactory bulb is the result of a response of specific sensory

axons to spatially restricted guidance cues in the target tissue

and along the axonal trajectory. In one model, a hierarchy of

such guidance cues directs axons of neurons expressing the

same odorant receptor to their common glomerular targets in

the olfactory bulb (Lin and Ngai, 1999; St John et al., 2002).

For example, neurons expressing a specific odorant receptor

are segregated within defined zones in the epithelium along

Figure 7. Model of IGF Activity in the Formation of the Olfactory

Sensory Map

(A) Under normal conditions, medially (gold) and laterally (blue) disposed olfac-

tory axons cross the cribriform plate (light blue) and extend to medial and lat-

eral glomeruli, respectively, forming a mirror symmetry in the olfactory bulb

(dotted line represents the plane of symmetry, which extends out of the plane

of the figure). We hypothesize that the position of a lateral glomerulus is deter-

mined through a ‘‘push-pull’’ mechanism. In this model, IGF ligands expressed

in the olfactory bulb attract axons exiting the lateral cribriform plate to grow

dorsolaterally (magenta arrow). This dorsolateral attraction is opposed by an

unknown cue or cues that influence the axons to grow ventral-medially (dark

green arrow). Together these opposing forces play a role in determining the

positions of glomeruli in the lateral olfactory bulb.

(B) In IGF mutants, axons no longer respond to IGF (Igf1r�/�) or IGFs are miss-

ing (Igf1�/�; Igf2�/�), leaving the medial ‘‘push’’ (dark green arrow) unopposed

by the IGF-dependent lateral ‘‘pull.’’ This results in a severe distortion of the

mirror symmetry within the olfactory bulb, with a lateral / ventral-medial ro-

tation and compression of the sensory map. Axons that normally extend to

the medial olfactory bulb are largely unaffected by the absence of IGF signal-

ing, and are probably responding to another attractive cue or cues to enter the

medial bulb.

(C and D) Examples of tau:lacZ-labeled P2 axons from the lateral olfactory ep-

ithelium as they penetrate and cross the cribriform plate (arrows) and extend to

their target glomeruli. In the wild-type background, axons turn and extend lat-

erally upon exiting the cribriform plate (C). In the Igf1r�/�mutant, axons instead

turn medially and extend a comparable distance to an ectopic site in the ven-

tromedial bulb (D). Thus, the observed distortion of the olfactory sensory map

in IGF mutants is likely the result of the misrouting of axons normally destined

to innervated the lateral olfactory bulb.
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the dorsomedial-ventrolateral axis (Miyamichi et al., 2005;

Ressler et al., 1993; Vassar et al., 1993). While axons arising

from each zone project to a corresponding dorsal-ventral zone

in the olfactory bulb (Miyamichi et al., 2005; Mori et al., 1999),

within these latter zones odorant receptor-specific axons con-

verge to form discrete glomeruli. Zone-to-zone projection may

be established by a mechanism that restricts the olfactory axons

to broad domains in the bulb (Cho et al., 2007), while additional

levels of control direct axons to converge to their appropriate

glomeruli within these domains. Interestingly, the odorant recep-

tor itself—via cAMP signaling—influences glomerular position

along the anterior-posterior axis of the olfactory bulb (Imai

et al., 2006; Mombaerts et al., 1996; Wang et al., 1998), although

it is not the sole determinant of the final position of the glomeru-

lus. Thus, zone-to-zone projections restrict axons along the

dorsal-ventral axis of the olfactory bulb and odorant receptors

influence glomerular positioning along the anterior-posterior

axis. Here we show that IGF signaling shapes the olfactory

axon projection along the medial-lateral axis, the bulb’s third

principal axis. The sorting of axons to the medial and lateral

hemispheres of the olfactory bulb represents a key developmen-

tal choice necessary for the establishment of mirror symmetry in

the olfactory sensory map.

What mechanisms are used to influence this choice? Axons in-

nervating the medial or lateral olfactory bulb originate from neu-

rons found in medial or lateral positions of the olfactory epithe-

lium, respectively (Levai et al., 2003). In a simple scenario,

axons would merely need to grow ‘‘up’’ into the bulb in order

to innervate the medial and lateral hemispheres. Consistent

with this idea, the chemorepellant Sema3A is expressed in the

medial bulb and has been suggested to provide a midline barrier

for olfactory axons expressing neuropilin-1, the Sema3A recep-

tor (Schwarting et al., 2000; Taniguchi et al., 2003). However,

a null mutation in the Sema3A gene results in only a slight ante-

rior-medial shift of the two mirror-symmetric maps (Taniguchi

et al., 2003). The lateral > medial gradient of IGF1 in the rostral

olfactory bulb at E14.5 (Figure 1) suggests that the differential

localization of IGF1 may attract some olfactory axons preferen-

tially to the lateral bulb. However, this gradient is subtle, is re-

stricted to the rostral olfactory bulb, and disappears by E15.5

(data not shown). It is also possible that any one of the numerous

IGF binding proteins encoded in the genome (Efstratiadis, 1998)

may sculpt the spatial distribution of available IGF ligands along

the olfactory projection. Yet a null mutation in the Igf1 gene does

not cause a demonstrable perturbation in the olfactory sensory

projection (Figure 3), suggesting that the mechanisms influenc-

ing medial versus lateral projection decisions likely involve

a complex interplay between multiple factors.

While it is formally possible that the response of olfactory neu-

rons to other axon guidance cues is itself dependent on IGF sig-

naling, we favor a model in which olfactory axons are guided by

IGFs (and possibly other factors) to their final glomerular position

(Figure 7). In this model, all olfactory axons, regardless of their or-

igin, are attracted to the medial bulb. Axons originating from the

lateral olfactory epithelium therefore require a counterbalancing

lateral attraction in order to extend into the lateral hemisphere of

the olfactory bulb. We propose that IGF ligands serve as this

attractive cue, with the ultimate location of a given glomerulus
in the lateral hemisphere being a function of the medial ‘‘push’’

and lateral ‘‘pull’’ imposed on the sensory axon growth cones

(Figure 7A). In the absence of IGF signaling—as in the IGF mu-

tants studied here—the lateral pull is severely reduced, and the

medial push (which may arise from an attractive medial cue or

repulsive lateral cue) is revealed, resulting in the misrouting of

axons to ectopic locations in the ventral bulb (Figure 7B). Al-

though our model invokes the activity of a hypothetical factor

to provide a medial push to the axons, an analogous ‘‘push-

pull’’ mechanism has been described in the development of

the retinotopic map, where countergradients specify the location

of retinal ganglion cell axon terminals in the target tissue (Schmitt

et al., 2006).

Why do the lateral axons not target to the same location as the

medial glomerulus in IGF mutants? Without the appropriate at-

tractive cue to turn laterally, the lateral axons find themselves

in a novel environment. We speculate that they form glomeruli

in positions based upon the molecular cues present in their

new target environment, which may be very different from that

found in the lateral hemisphere. It is interesting to note that the

position of the medial glomerulus is largely unaffected in

Igf1r�/�mice; axons innervating this glomerulus appear to follow

their normal targeting strategy independent of IGF signaling. The

behavior of these axons may reflect the presence of other attrac-

tive cues in the medial bulb that compensate for the absence of

IGF signaling in the mutant background.

It remains unclear at present what factors or cues specify the

exact location of individual glomeruli. Nonetheless, the data pre-

sented here clearly identify a role of IGF signaling in the formation

of the olfactory sensory map and add the IGFs to a growing list of

molecules involved in the patterning of neuronal connections in

the developing nervous system.

EXPERIMENTAL PROCEDURES

Mouse Strains

All mouse strains used in this study were on a mixed 129/Bl6 background. Igf1

and Igf2 mutants are described in DeChiara et al. (1990) and Liu et al. (1993).

Igf1r mutants, described in Liu et al. (1993), were crossed with OMP-IRES-

tau:lacZ and P2-IRES-tau:lacZ mice described in Mombaerts et al. (1996).

Immunohistochemistry

Whole heads from different embryonic stages were fixed for 2 hr at room tem-

perature in 4% paraformaldehyde, followed by an overnight incubation in 30%

sucrose, 1X PBS at 4�C. Tissue was then mounted in TBS tissue freezing me-

dium (Triangle Biosciences) and frozen at�80�C until sectioned. Cryosections

were taken at 12 mm thickness unless indicated otherwise.

For immunohistochemistry, slides were incubated in PBST (1X PBS, 0.1%

Triton X-100) for 5 min followed by a 1 hr incubation in blocking solution (1X

PBS, 10% heat-inactivated normal goat serum [HINGS], and 0.1% Triton X-

100) before primary antibody was added. Rabbit anti-b-galactosidase (1:900,

Cappel) or rabbit anti-GFP (purified IgG; 1:900, Invitrogen) were incubated for

1 hr at room temperature followed by incubation at 4�C overnight. For IGF1R

staining, sections were incubated in 3% H2O2 for 45 min prior to incubation in

blocking solution; chicken anti-IGF1R (1:10, Upstate) was incubated for 2 hr

at room temperature followed by incubation at 4�C overnight and visualized

using an HRP-conjugated goat anti-chicken antibody (1:200, AbCam) and Cy3

tyramide (Perkin Elmer). IGF1R was also localized using a rabbit anti-IGF1R

antibody (1:50, Cell Signaling Technology) following treatmentof tissue sections

in boiling sodium citrate buffer. Goat anti-IGF1 and goat anti-IGF2 (R&D sys-

tems) were each used at 1:20 dilution. Goat anti-OMP (Wako) was used at
Neuron 57, 847–857, March 27, 2008 ª2008 Elsevier Inc. 855
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1:1000. For goat primary antibodies, donkey serum replaced goat serum in the

blocking solution. Signal was detected using Alexa 488-, Alexa 568-, or Alexa

594-conjugated secondary antibodies (Invitrogen). Sections were counter-

stained with Hoechst 33342 to visualize the positions of nuclei. RNA in situ

hybridizations were performed as described previously (Speca et al., 1999).

Neuronal Cell Culture and Growth Cone Turning Assays

Olfactory septa and turbinates were collected from P0–P2 neonatal rats and in-

cubated in papain (20 units/ml in PBS) at 37�C for 30 min. The solution was then

removed and replaced with 10% fetal bovine serum (FBS) in Neurobasal

medium, after which the remaining bony pieces and large aggregates were

triturated gently with a glass pipette. The dissociated cells were pelleted by cen-

trifugation, resuspended in prewarmed olfactory neuron culture media (Neuro-

basal plus 2% B27, 10 mg/ml insulin, 2 mM Glutamax, 10 ng/ml BDNF, and

25 ng/ml NGF) and plated on laminin-coated coverslips. After culturing for

24–48 hr at 37�C, coverslips were transferred to a heated chamber on the stage

of a microscope and incubated in serum-free L15 medium for at least 30 min at

�37�C before the growth cone turning assay. Cerebellar granule neurons from

P0 rats were dissociated and plated at low density (105/dish) onto laminin-

coated coverslips (Xiang et al., 2002). After culturing for 12–24 hr at 37�C, cov-

erslips were transferred to a heated chamber on the stage of a microscope and

incubated in serum-free L15 medium for at least 30 min at �37�C.

Microscopic gradients of IGF were produced as described previously

(Zheng et al., 1994), except that the tip of the pipette was located 75 mm

away from the growth cone center. Images of neurites were recorded and

analyzed using Scion Image 4.0.2. Turning angle was defined as the angle

between the original direction of the neurite’s extension and a straight line con-

necting the growth cone position at the start and the end of the assay period.

Procedures for both cell types were identical, except that the final positions of

the olfactory neuron growth cones were measured following 60 to 90 min ex-

posure to the gradient (versus 1 hr for cerebellar granule neurons), and only

neurites that extended >5 mm during the 60 to 90 min period were included

in the analysis for olfactory neurons. For pharmacological treatment of cere-

bellar granule neurons, LY294002 was applied 30 min before the turning assay

and maintained throughout the duration of the assay.

Western Blotting

Cerebellar granule cells were cultured at high density ([2 3 105]/dish) in 35 mm

tissue culture dishes and were serum starved for 2 hr before stimulation with

IGF1. Cells were harvested in lysis buffer (0.1% SDS, 1% Nonidet P-40, 1%

glycerin, 50 mM HEPES [pH 7.4], 2 mM EDTA, and 100 mM NaCl; 200 ml/dish).

Proteins were separated by electrophoresis on 10% SDS-polyacrylamide gels

and transferred onto PVDF membranes. Blots were blocked for 3 hr at room

temperature in 5% BSA, incubated with a polyclonal antibody specific for phos-

pho-Akt (1:1000, R&D Systems) overnight at 4�C, rinsed, and incubated for 1 hr

at room temperature with an HRP-conjugated goat anti-rabbit IgG (1:10,000;

Biorad). Chemiluminescence detection was performed with an ECL kit (Pierce).

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/57/6/847/DC1/.
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