Inorganic Nano Light-Emitting Transistor: p-Type Porous Silicon Nanowire/n-Type ZnO Nanofilm
详细信息    查看全文
文摘
An inorganic nano light-emitting transistor (INLET) consisting of p-type porous Si nanowires (PoSiNWs) and an n-type ZnO nanofilm was integrated on a heavily doped p-type Si substrate with a thermally grown SiO2 layer. To verify that modulation of the Fermi level of the PoSiNWs is key for switchable light emitting, I–V and electroluminescent characteristics of the INLET are investigated as a function of gate bias (V g). As the V g is changed from 0 V to −20 V, the current level and light-emission intensity in the orange–red range increase by three and two times, respectively, with a forward bias of 20 V in the p–n junction, compared to those at a V g of 0 V. On the other hand, as the V g approaches 10 V, the current level decreases and the emission intensity is reduced and then finally switched off. This result arises from the modulation of the Fermi level of the PoSiNWs and the built-in potential at the p–n junction by the applied gate electric field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700