Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: An approach to virtual materials design
详细信息    查看全文
文摘
Computational micromechanics of composites is an emerging tool required for virtual materials design (VMD) to address the effect of different variables involved before materials are manufactured. This strategy will avoid unnecessary costs, reducing trial-and-error campaigns leading to fast material developments for tailored properties. In this work, the effect of the fibre cross section on the transverse behaviour of unidirectional fibre composites has been evaluated by means of computational micromechanics. To this end, periodic representative volume elements containing uniform and random dispersions of 50% of parallel non-circular fibres with lobular, polygonal and elliptical shapes were generated. Fibre/matrix interface failure as well as matrix plasticity/damage were considered as the fundamental failure mechanisms operating at the microscale under transverse loading. Circular fibres showed the best averaged behaviour although lobular fibres exhibited superior performance in transverse compression mainly due to the higher tensile thermal residual stresses generated during cooling at the fibre/matrix interface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700