Sequential Interactions of Fibroblast Growth Factor-2, Brain-Derived Neurotrophic Factor, Neurotrophin-3, and Their Receptors Define Critical Periods in the Development of Cochlear Ganglion Cells
详细信息    查看全文
文摘
We studied the interactions of neurotrophin-3 (NT3) with brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF-2), and their effects on tyrosine kinase C (TrkC) expression during cochlear ganglion development. Otocysts were explanted from white leghorn chicken embryos at stages when the neuronal precursors normally start to migrate. Cultures were fed with various combinations of NT3, BDNF, and FGF-2. NT3 appeared to have a greater effect on neurite outgrowth than on migration and was enhanced by BDNF. The results from in situ hybridization and immunostaining for TrkC receptor revealed up-regulation of the mRNA and protein by combining NT-3 and BDNF. NT-3 combined with FGF-2 produced down-regulation of receptor. Neutralizing antibody to NT3 had an inhibitory effect on neuronal development, suggesting that endogenous NT3 is normally active during the period examined. The findings suggest an interactive role of NT3 in early neuronal development. The trophic synergism of NT3 and BDNF may result from up-regulation of TrkC. This hypothesis is consistent with immunostaining in the embryonic basilar papilla, which localized TrkC to the initial axonal invasion sites. While the growth factors each produce particular trophic effects, the interactions of these factors define a critical sequence of developmental events based on modulation of receptor expression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700