Finite element implementation of Puck's failure criterion for failure analysis of laminated plate subjected to biaxial loadings
详细信息    查看全文
文摘
The present work proposes a finite element implementation of Puck's failure criterion for ultimate failure analysis of laminated composite plate via well-established higher order shear deformation theory (HSDT). A seven degree of freedom and C0 continuity finite element model using nine noded isoparametric elements is developed for precise computation of ply-by-ply stresses of laminated composite plate subjected to various bi-axial loading. The physically based Puck's failure criterion based on Mohr–Coulomb hypothesis and a degradation model proposed by Puck is used in the present failure analysis procedure for computing first-ply failure (FPF) and last-ply failure (LPF) stress. The finite element implementation is carried out through a finite element code developed in MATLAB, where material non-linearity due to material behaviour under in plane loading and post FPF damage, was taken into account. The results obtained by present approach are compared with classical Tsai–Wu, Tsai–Hill, Lee's failure criteria and experimental results available in various literatures. The FPF and LPF stress envelopes for a critical lamina are obtained for various lamination schemes, thickness ratio, modulus ratio and different biaxial loading conditions for symmetric angle-ply and cross-ply laminates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700