A theoretical study on NH bond dissociation enthalpies of oxo, thio and seleno carbamates and their N-protonated and N-deprotonated species
详细信息    查看全文
文摘
The effect of N-protonation and N-deprotonation on structure, Nbond"" title=""single bond"" border=""0"">H bond dissociation enthalpies (BDEs) and stabilities of radicals formed on H-abstraction from nitrogen atom of carbamates and their thio- and seleno-analogs have been investigated. For those molecules where experimental results are available for comparison, the ROB3LYP/6-311++G(d,p)//B3LYP/6-31+G* theoretical level is in agreement within the estimated experimental uncertainty. The Nbond"" title=""single bond"" border=""0"">H BDE of carbamates H2NC(=X)YCH3 [X = O; Y = O, S, Se] are higher but lower when X = S, Se and Y = O, S, Se in comparison to Nbond"" title=""single bond"" border=""0"">H BDE of NH3. DFT calculations indicate that the Nbond"" title=""single bond"" border=""0"">H bond dissociation enthalpies are decreased by protonation and deprotonation at nitrogen atom; but the effect of deprotonation is rather smaller than the protonation. The variations are analyzed in terms of stabilities of molecules, their protonated and deprotonated species along with their respective radicals. The electron delocalization from nitrogen, X and Y atoms, electrostatic interactions, conjugative interactions and spin delocalization are the important factors affecting the stability. The spin delocalization and shift of radical center to chalcogen X (X = S, Se) are the main determinants for radical stability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700