Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: An XPS investigation of mechanism
详细信息    查看全文
文摘
Although biopolymers are focusing the attention of researchers as potential adsorbents for heavy metal removal, little information is given about the properties of the resulting complexes. This information would also bring a better understanding of the mechanisms involved in metal binding to the polymer. XPS (X-ray photo-electron spectroscopy) is a powerful technique to investigate how metal ions bind onto these matrices. In this study, copper, chromium and mercury ions were adsorbed on natural and crosslinked (glutaraldehyde and epichlorohydrin) chitosan matrices, which present diverse functional groups and may induce different adsorption mechanisms. X-ray photoelectron spectroscopy (XPS) revealed that these metals bind to glutaraldehyde-crosslinked chitosan, differently from the other two kinds of matrices. Hence, amino group availability and the formation of new structures such as imino bonds are key factors. Copper(II) stabilization was found to be poor in glutaraldehyde-crosslinked chitosan. Conversely, Hg(II) ions present higher adsorption capacity in this kind of matrix. Chromium(VI) was reduced in all three matrices. In this case, chromium(VI) is probably not well stabilized by the functional groups of these polymers and may also undergo the action of their reducing groups.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700