The effect of iron catalyzed graphitization on the textural properties of carbonized cellulose: Magnetically separable graphitic carbon bodies for catalysis and remediation
详细信息    查看全文
文摘
Whereas pyrolysis of pristine microcrystalline cellulose spheres yields nonporous amorphous carbon bodies, pyrolysis of microcrystalline cellulose spheres loaded with iron salts leads to the formation of magnetically separable mesoporous graphitic carbon bodies. The microcrystalline cellulose spheres loaded with either iron(III) nitrate, ammonium iron(III) citrate or iron(III) chloride were pyrolyzed up to 800 °C. Temperature dependent X-ray diffraction analysis shows that the iron salts are transformed into iron oxide nanoparticles; their size and distribution are influenced by the anion of the iron salt. The iron oxide nanoparticles are subsequently carbothermally reduced by the amorphous carbon that is obtained from the pyrolysis of the microcrystalline cellulose. Next, the iron nanoparticles catalyze the conversion of the amorphous carbon to graphitic carbon nanostructures as shown with XRD, electron microscopy and Raman spectroscopy. The extent of graphitization depends on the iron nanoparticle size. Nitrogen physisorption measurements show that this graphitization process introduces mesopores into the carbon bodies. The benefits of the properties of the resulting carbon bodies (ferromagnetic character, graphitic content, mesoporosity) are discussed in connection with applications in liquid-phase catalysis and remediation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700