Simulation of self-compacting concrete flow in the J-ring test using smoothed particle hydrodynamics (SPH)
详细信息    查看全文
文摘
A range of SCC mixes with 28-day cube compressive strength between 30 and 80 MPa has been prepared in the laboratory, and the time t500J (the time when the mix spread reaches 500 mm) and diameter of the flow spread of each mix were recorded in the J-ring test. The entire test was then simulated from the moment the cone was lifted until the mix stopped flowing. An incompressible mesh-less smoothed particle hydrodynamics (SPH) methodology has been implemented in this simulation and a suitable Bingham-type constitutive model has been coupled with the Lagrangian momentum and continuity equations to simulate the flow. The aim of this numerical simulation was to investigate the capabilities of the SPH methodology to predict the flow of SCC mixes through gaps in reinforcing bars. To confirm that the mix flows homogeneously, the distribution of large coarse aggregates in the mixes has been simulated and examined along several cut sections of the flow pancake. It is revealed that all the simulated mixes meet the passing ability criterion with no blockage as in the laboratory J-ring test with respect to t500J, the flow spread, and aggregate homogeneity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700