Decentralized multiuser diversity with opportunistic packet transmission in MIMO wireless sensor networks
详细信息    查看全文
文摘
In this study, we consider a single-hop wireless sensor network where both the sensor nodes and the controller node have multiple antennas. We focus on single beam opportunistic communication and propose a threshold-based medium access control (MAC) scheme for uplink packet transmission which exploits multiuser diversity gain without feedback in a decentralized manner. Packet transfer from sensor nodes to the controller node is initiated when the channel quality of any node exceeds the predefined threshold based on the effective signal-to-noise ratio (ESNR) measurements at the sensor nodes through linear combining techniques. The optimum threshold is determined to maximize the probability of successful packet transmission where only one sensor node transmits its packet in one time-slot. The proposed scheme trades the successful packet rate to increase the SNR of the successful packets assuming Rayleigh fading and collision-based reception model. Computer simulations confirm that proposed scheme has higher successful packet SNR compared to the simple time division multiple access (TDMA)-based MAC scheme with round-robin fashion. The use of multiple antennas at the sensor nodes can also improve the throughput of proposed scheme compared with our previous scheme without implementing the spatial diversity at the SNs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700