Contraction-based nonlinear model predictive control formulation without stability-related terminal constraints
详细信息    查看全文
文摘
Contraction-based nonlinear model predictive control (NMPC) formulations are attractive because they generally require short prediction horizons, and there is no need for the terminal set computation and reinforcement that are common requirements to guarantee stability. However, the inclusion of the contraction constraint in the definition of the underlying optimization problem often leads to non-standard features, such as a need for the multi-step open-loop application of control sequences or the use of multi-step memorization of the contraction level, which may cause unfeasibility in the presence of unexpected disturbances. In this study, we propose a new contraction-based NMPC formulation where no contraction constraint is explicitly involved. The convergence of the resulting closed-loop behavior is proved under mild assumptions. An illustrative example is provided in order to demonstrate the relevance of the proposed formulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700