Decoding distinct membrane interactions of HIV-1 fusion inhibitors using a combined atomic force and fluorescence microscopy approach
详细信息    查看全文
文摘
Enfuvirtide and T-1249 are two potent HIV-1 fusion inhibitor peptides. Recent studies indicate that lipids play an important role in the mode of action of those bioactive molecules. Using a combined tandem atomic force microscopy (AFM)-epifluorescence microscopy approach, we studied the interaction of both enfuvirtide and T-1249 with supported lipid bilayers. Fluid (ld)-gel (so) and ld-liquid ordered (lo) phase-separated membrane systems were tested. Results, especially for T-1249, show significant lipid membrane activity at a 15 ¦ÌM peptide concentration. T-1249, in opposition to enfuvirtide, induces an increase in membrane surface roughness, decrease in membrane fluidity, bilayer thinning at ld domains and disruption of the so domain borders. In terms of structural properties, both enfuvirtide and T-1249 possess distinct functional hydrophobic and amphipathic domains of HIV gp41. While enfuvirtide only yields the tryptophan-rich domain (TRD), T-1249 possesses both TRD and pocket-binding domain (PBD). TRD increases the hydrophobicity of the peptide while PBD enhances the amphipathic characteristics. As such, the enhanced membrane activity of T-1249 may be explained by a synergism between its amphipathic N-terminal segment and its hydrophophic C-terminal. Our findings provide valuable insights on the molecular-level mode of action of HIV-1 fusion inhibitors, unraveling the correlation between their structural properties and membrane interactions as a factor influencing their antiviral activity. Ultimately, this work validates the applicability of a combined AFM and fluorescence approach to evaluate the mechanic and structural properties of supported lipid bilayers upon interaction with membrane-active peptides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700