Synthesis and application of a new carboxylated cellulose derivative. Part I: Removal of Co2+, Cu2+ and Ni2+ from monocomponent spiked aqueous solution
详细信息    查看全文
文摘
A new carboxylated cellulose derivative (CTA) was prepared from the esterification of cellulose with 1,2,4-Benzenetricarboxylic anhydride. CTA was characterized by percent weight gain (pwg), amount of carboxylic acid groups (nCOOH), elemental analysis, FTIR, TGA, solid-state 13C NMR, X-ray diffraction (DRX), specific surface area, pore size distribution, SEM and EDX. The best CTA synthesis condition yielded a pwg and nCOOH of 94.5% and 6.81 mmol g−1, respectively. CTA was used as an adsorbent material to remove Co2+, Cu2+ and Ni2+ from monocomponent spiked aqueous solution. Adsorption studies were developed as a function of the solution pH, contact time and initial adsorbate concentration. Langmuir model better fitted the experimental adsorption data and the maximum adsorption capacities estimated by this model were 0.749, 1.487 and 1.001 mmol g−1 for Co2+, Cu2+ and Ni2+, respectively. The adsorption mechanism was investigated by using isothermal titration calorimetry. The values of ΔadsH° were in the range from 5.36 to 8.09 kJ mol−1, suggesting that the mechanism controlling the phenomenon is physisorption. Desorption and re-adsorption studies were also performed. Desorption and re-adsorption efficiencies were closer to 100%, allowing the recovery of both metal ions and CTA adsorbent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700