Cell division and turgor-driven stem elongation in juvenile plants: A synthesis
详细信息    查看全文
文摘
The growth of hypocotyls and epicotyls has been attributed to the turgor-driven enlargement of cells, a process that is under the control of phytohormones such as auxin. However, the experiments presented here and elsewhere using developing sunflower (Helianthus annuus L.) seedlings raised either in darkness (skotomorphogenesis) or in white light (WL) (photomorphogenesis) indicate that auxin-mediated segment elongation ceases after 1 day, whereas hypocotyl growth continues in the intact system. Based on these results and data from the literature, we propose that hypocotyl growth consists of three inter-related processes: (1) cell division in the apical meristematic regions; (2) turgor-driven cell elongation along the stem; and (3) cell maturation in the basal region of the organ. We document that the closed apical hook (or the corresponding region after opening in WL) is the location where cell division occurs, and suggest that the epidermis and the outer cortex plays an important role in a ¡°pacemaker system¡± for cell division. Results from the literature support the hypothesis that pectin metabolism in the expansion-limiting epidermal cell wall(s) is involved in wall-loosening and -stiffening. During hypocotyl growth in darkness and WL, turgor pressure is largely maintained, i.e., in H. annuus no hydrostatic pressure-regulated growth occurs. These data do not support the ¡°loss of stability theory¡± of cell expansion. Finally, we document that turgor maintenance during organ elongation is caused by sucrose catabolism via vacuolar acid invertases, resulting in the generation of hexoses (osmoregulation). Based on these data, we present an integrative model of axial elongation in developing seedlings of dicotyledonous plants and discuss open questions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700