Turning on Lanthanide Luminescence via Nanoencapsulation
详细信息    查看全文
文摘
Encapsulation of macrocyclic europium(III) chelates by discrete, monodisperse SiO2 nanoparticles (NPs) has been carried out, and the resulting significant enhancement of metal-derived luminescence has been studied to rationalize this dramatic effect. The tetraiminodiphenolate motif chosen for this study is easily synthesized and incorporated into the NP matrix under ambient conditions. The free complex exhibits primarily weak ligand-derived emission at room temperature, typical for these compounds, and displays intense metal-centered luminescence from the europium only when cooled to 77 K. Upon encapsulation by the NPs, however, europium-derived luminescence is visibly 鈥渢urned on鈥?at room temperature, yielding strong emission peaks characteristic of europium(III) with a corresponding enhancement factor of 6 脳 106. The similar ligand singlet and triplet excited-state energies determined for the free complex (20820 and 17670 cm鈥?, respectively) versus the encapsulated complex (20620 and 17730 cm鈥?) indicate that encapsulation does not affect the energy levels of the ligand appreciably. Instead, a detailed analysis of the metal-centered emission and ligand singlet and triplet emission bands for the free and encapsulated complexes reveals that the enhanced metal emission is due to the rigid environment afforded by the silica NP matrix affecting vibrationally mediated energy transfer. Further, the metal-centered emission lifetimes in methanol versus deuterated methanol indicate a decrease in the number of coordinated solvent molecules upon encapsulation, changing from an average of 3.3 to 2.1 bound methanol molecules and reducing the known quenching effect on europium-centered luminescence due to nearby OH vibrations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700