Markovian and Non-Markovian Modeling of Membrane Dynamics with Milestoning
详细信息    查看全文
  • 作者:Alfredo E. Cardenas ; Ron Elber
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2016
  • 出版时间:August 25, 2016
  • 年:2016
  • 卷:120
  • 期:33
  • 页码:8208-8216
  • 全文大小:475K
  • 年卷期:0
  • ISSN:1520-5207
文摘
We exploit atomically detailed simulations and the milestoning theory to extract coarse grained models of membrane kinetics and thermodynamics. Non-Markovian and Markovian theories for the phosphate group displacements are used to coarsely represent membrane motions. The construction of the two models makes it possible to examine their consistency and accuracy. The equilibrium and fluctuations of the phosphate groups along the normal to the membrane plane are estimated, and milestoning equations are constructed and solved. An optimal Markovian model is constructed that reproduces exactly the equilibrium and mean first passage time (MFPT) of the non-Markovian model. The equilibrium solution of both models is favorably compared to distributions obtained from straightforward molecular dynamics simulations. The picture for the kinetics is complex. Multiple local relaxation times of the mass density are illustrated emphasizing the non-Markovian characteristics of the process. In Markovian modeling, only a single relaxation time is assumed for a state. Mapping of particle dynamics to the dynamics of a field density offers a new way of coarse graining complex systems as membranes that may bridge between atomically detailed models and phenomenological descriptions of macroscopic membranes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700