Ligand Access to the Active Site in Thermus thermophilusba3 and Bovine Heart aa3 Cytochrome Oxidases
详细信息    查看全文
文摘
Knowledge of the structure and dynamics of the ligand channel(s) in heme-copper oxidases is critical for understanding how the protein environment modulates the functions of these enzymes. Using photolabile NO and O2 carriers, we recently found that NO and O2 binding in Thermus thermophilus (Tt ) ba3 is 10 times faster than in the bovine enzyme, indicating that inherent structural differences affect ligand access in these enzymes. Using X-ray crystallography, time-resolved optical absorption measurements, and theoretical calculations, we investigated ligand access in wild-type Tt ba3 and the mutants, Y133W, T231F, and Y133W/T231F, in which tyrosine and threonine in the O2 channel of Tt ba3 are replaced by the corresponding bulkier tryptophan and phenylalanine, respectively, present in the aa3 enzymes. NO binding in Y133W and Y133W/T231F was found to be 5 times slower than in wild-type ba3 and the T231F mutant. The results show that the Tt ba3 Y133W mutation and the bovine W126 residue physically impede NO access to the binuclear center. In the bovine enzyme, there is a hydrophobic 鈥渨ay station鈥? which may further slow ligand access to the active site. Classical simulations of diffusion of Xe to the active sites in ba3 and bovine aa3 show conformational freedom of the bovine F238 and the F231 side chain of the Tt ba3 Y133W/T231F mutant, with both residues rotating out of the ligand channel, resulting in no effect on ligand access in either enzyme.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700