Mechanism of O2 Activation and Methanol Production by (Di(2-pyridyl)methanesulfonate)PtIIMe(OHn)(2–n)– Complex from Theory with Validation fro
详细信息    查看全文
文摘
The mechanism of the (dpms)PtIIMe(OHn)(2鈥?i>n)鈭?/i> oxidation in water to form (dpms)PtIVMe(OH)2 and (dpms)PtIVMe2(OH) complexes was analyzed using DFT calculations. At pH < 10, (dpms)PtIIMe(OHn)(2鈥?i>n)鈥?/sup> reacts with O2 to form a methyl Pt(IV)鈥揙OH species with the methyl group trans to the pyridine nitrogen, which then reacts with (dpms)PtIIMe(OHn)(2鈥?i>n)鈥?/sup> to form 2 equiv of (dpms)PtIVMe(OH)2, the major oxidation product. Both the O2 activation and the O鈥揙 bond cleavage are pH dependent. At higher pH, O鈥揙 cleavage is inhibited whereas the Pt-to-Pt methyl transfer is not slowed down, so making the latter reaction predominant at pH > 12. The pH-independent Pt-to-Pt methyl transfer involves the isomeric methyl Pt(IV)鈥揙OH species with the methyl group trans to the sulfonate. This methyl Pt(IV)鈥揙OH complex is more stable and more reactive in the Pt-to-Pt methyl-transfer reaction as compared to its isomer with the methyl group trans to the pyridine nitrogen. A similar structure鈥搑eactivity relationship is also observed for the SN2 functionalization to form methanol by two isomeric (dpms)PtIVMe(OH)2 complexes, one featuring the methyl ligand trans to the sulfonate group and another with the methyl trans to the pyridine nitrogen. The barrier to functionalize the former isomer with the CH3 group trans to the sulfonate group is 2鈥? kcal/mol lower. The possibility of the involvement of Pt(III) species in the reactions studied was found to correspond to high-barrier reactions and is hence not viable. It is concluded that the dpms ligand facilitates Pt(II) oxidation both enthalpically and entropically.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700