Switching, Dual Spin-Filtering Effects, and Negative Differential Resistance in a Carbon-Based Molecular Device
详细信息    查看全文
文摘
We present ab initio calculations for spin-dependent electron transport in a molecular device constructed by two carbon chains capped with a phenyl ring, which is sandwiched between two zig-zag-edged graphene nanoribbon (ZGNR) electrodes, where the ZGNRs are modulated by external magnetic field. The coexistence of switching, dual spin-filtering effects, and negative differential resistance (NDR) in the model device is demonstrated with the theory of carbon 蟺-electrons. Interestingly, a two-state molecular conformational switch can be realized by changing the orientation between the planes of phenyl ring and electrodes, where the majority-spin current modulation (ON/OFF ratio) is 170鈥?79 within the considered bias window. Moreover, the device shows perfect dual spin-filtering effect and can generate and control a full dual spin-polarized current through either the source-drain voltage or magnetic configuration of the electrodes. The selective spin current is due to a dual selection rule, the symmetry match between two ZGNR electrodes spin channel, and the carbon chain鈥檚 spin selection in our system. In addition, the obvious NDR behavior has also been observed in our model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700