Multicomponent Effects on the Crystal Structures and Electrochemical Properties of Spinel-Structured M3O4 (M = Fe, Mn, Co) Anodes in Lithium Rechargeable Batteries
详细信息    查看全文
文摘
The structural and electrochemical properties of the multicomponent oxide MnFeCoO4, which has a cubic spinel AB2O4 structure, are studied experimentally and by using first principles calculations. A solid solution of the spinels Mn3O4, Fe3O4, and Co3O4 forms the spinel MnFeCoO4, with Co preferentially occupying tetrahedral sites (A site). First principles calculations predict that the valence states of each transition metal would shift from +8/3 for the single component oxide to +3, +3, and +2 for the Mn, Fe, and Co ions, respectively, in the mixed spinel. The charge ordering of the transition metals (Co2+ vs Mn3+, Fe3+) in the multicomponent oxide is speculated to be the reason for the strong preference of Co for the A site. As a result, the characteristic redox potential of each transition metal shifted, as demonstrated in an anode test of the multicomponent oxide in a lithium cell. This represents an example how the electrochemical performance could be tuned by multicomponent substitution.

Keywords:

conversion; rechargeable batteries; spinel; electrode

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700