Room-Temperature Ordered Spin Structures in Cluster-Assembled Single V@Si12 Sheets
详细信息    查看全文
文摘
Since most of the existing pristine two-dimensional (2D) materials are either intrinsically nonmagnetic or magnetic with small magnetic moment per unit cell and weak strength of magnetic coupling, introducing transition metal atoms in various nanosheets has been widely used for achieving a desired 2D magnetic material. However, the problem of surface clustering for the doped transition metal atoms is still challenging. Here we demonstrate via first-principles calculations that the recently experimentally characterized endohedral silicon cage V@Si12 clusters can construct two types of single cluster sheets exhibiting hexagonal porous or honeycomb-like framework with regularly and separately distributed V atoms. For the ground state of these two sheets, the preferred magnetic coupling is found to be ferromagnetic due to a free-electron-mediated mechanism. By using external strain, the magnetic moments and strength of magnetic coupling for these two sheets can be deliberately tuned, which would be propitious to their advanced applications. More attractively, our first-principles molecular dynamics simulations show that both the structure and strength of ferromagnetic coupling for the pristine porous sheet are stable enough to survive at room temperature. The insights obtained in this work highlight a new avenue to achieve 2D silicon-based spintronics nanomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700