Kinetics of CO2 Reduction over Nonstoichiometric Ceria
详细信息    查看全文
文摘
The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2鈭捨?/sub>, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 鈮?未 鈮?0.25), temperatures (693 鈮?T 鈮?1273 K), and CO2 concentrations (0.005 鈮?pCO2 鈮?0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (未 < 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (未 < 0.25). For extents greater than 未 = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower 未. Following thermal reduction at very low 未, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to 未 = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700