Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel
详细信息    查看全文
文摘
Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO2 (LCO2)鈥搘ater displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = 鈭?.1), unstable displacement occurred at all injection rates over 2 orders of magnitude. LCO2 displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO2 displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO2 saturation (SLCO2) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO2 resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict SLCO2 in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated SLCO2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700