Role of Collector Alternating Charged Patches on Transport of Cryptosporidium parvum Oocysts in a Patchwise Charged Heterogeneous Micromodel
详细信息    查看全文
文摘
The role of collector surface charge heterogeneity on transport of Cryptosporidium parvum oocyst and carboxylate microsphere in 2-dimensional micromodels was studied. The cylindrical silica collectors within the micromodels were coated with 0, 10, 20, 50, and 100% Fe2O3 patches. The experimental values of average removal efficiencies (畏) of the Fe2O3 patches and on the entire collectors were determined. In the presence of significant (>3500 kT) Derjaguin鈥揕andau鈥揤erwey鈥揙verbeek (DLVO) energy barrier between the microspheres and the silica collectors at pH 5.8 and 8.1, 畏 determined for Fe2O3 patches on the heterogeneous collectors were significantly less (p < 0.05, t test) than those obtained for collectors coated entirely with Fe2O3. However, 畏 calculated for Fe2O3 patches for microspheres at pH 4.4 and for oocysts at pH 5.8 and 8.1, where the DLVO energy barrier was relatively small (ca. 200鈥?60 kT), were significantly greater (p < 0.05, t test) than those for the collectors coated entirely with Fe2O3. The dependence of 畏 for Fe2O3 patches on the DLVO energy barrier indicated the importance of periodic favorable and unfavorable electrostatic interactions between colloids and collectors with alternating Fe2O3 and silica patches. Differences between experimentally determined overall 畏 for charged heterogeneous collectors and those predicted by a patchwise geochemical heterogeneous model were observed. These differences can be explained by the model鈥檚 lack of consideration for the spatial distribution of charge heterogeneity on the collector surface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700