Lipase Immobilization on Oleic Acid−Pluronic (L-64) Block Copolymer Coated Magnetic Nanoparticles, for Hydrolysis at the Oil/Water Interface
详细信息    查看全文
文摘
Here, we have reported a new approach for utilizing oleic acid−Pluronic L-64 block copolymer coated iron oxide nanoparticles as supports for enzyme immobilization. Iron oxide nanoparticles were prepared by a coprecipitation method and were coated with oleic acid and Pluronic to achieve higher stability and dispersibility. The surface morphology and size of the particle, as determined by transmission electron microscopy (TEM), was ±10 nm. X-ray diffraction (XRD) patterns were taken over a range from 10° to 90° 2θ, using Cu Kα radiation. Saturation magnetization values, measured at 300 K, varied from 34.6 emu/g to 60.8 emu/g. The possible interaction behavior of oleic acid and Pluronic was observed by Fourier transform infrared (FTIR) analysis and nuclear magnetic resonance (NMR) studies. Further potential of this material as a support for lipase immobilization and enzymatic hydrolysis at the oil/water interface was also investigated. The features of the surface-coated magnetic particles enable the adsorption of lipase from Candida cylindraces via strong hydrophobic interactions, which enhances the stability of the adsorbed enzyme molecules. The stability of the catalyst and, hence, its industrial applicability was tested by performing subsequent reaction cycles for the hydrolysis of olive oil. The activity of the immobilized lipase, pretreated with its substrate, was 510 U/g-matrix and was observed to be maintained at levels as high as 90% of its original activity for up to at least seven reuses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700