Interaction between the Marine Sponge Cyclic Peptide Theonellamide A and Sterols in Lipid Bilayers As Viewed by Surface Plasmon Resonance and Solid-State 2H Nuclear Magnetic Resonance
详细信息    查看全文
文摘
Theonellamides (TNMs) are members of a distinctive family of antifungal and cytotoxic bicyclic dodecapeptides isolated from the marine sponge Theonella sp. Recently, it has been shown that TNMs recognize 3尾-hydroxysterol-containing membranes, induce glucan overproduction, and damage cellular membranes. However, to date, the detailed mode of sterol binding at a molecular level has not been determined. In this study, to gain insight into the mechanism of sterol recognition of TNM in lipid bilayers, surface plasmon resonance (SPR) experiments and solid-state deuterium nuclear magnetic resonance (2H NMR) measurements were performed on theonellamide A (TNM-A). SPR results revealed that the incorporation of 10 mol % cholesterol or ergosterol into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes significantly enhances the affinity of the peptide for the membrane, particularly in the initial binding to the membrane surface. These findings, together with the fact that binding of TNM-A to epicholesterol (3伪-cholesterol)-containing liposomes and pure POPC liposomes was comparably weak, confirmed the preference of the peptide for the 3尾-hydroxysterol-containing membranes. To further establish the formation of the complex of TNM-A with 3尾-hydroxysterols in lipid bilayers, solid-state 2H NMR measurements were conducted using deuterium-labeled cholesterol, ergosterol, or epicholesterol. The 2H NMR spectra showed that TNM-A significantly inhibits the fast rotational motion of cholesterol and ergosterol, but not epicholesterol, therefore verifying the direct complexation between TNM-A and 3尾-hydroxysterols in lipid bilayers. This study demonstrates that TNM-A directly recognizes the 3尾-OH moiety of sterols, which greatly facilitates its binding to bilayer membranes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700