Hydrodynamic Modeling of Gas–Solid Bubbling Fluidization Based on Energy-Minimization Multiscale (EMMS) Theory
详细信息    查看全文
文摘
Hydrodynamic modeling of gas鈥搒olid bubbling fluidization is of significance to the development of gas鈥搒olid bubbling reactors since it still remains at the stage of experimental and empirical science. As is the role of particle clusters in gas鈥搒olid fast fluidization, gas bubbles characterize the structural heterogeneity of gas鈥搒olid bubbling fluidization, and their evolution is mainly subject to the constraints of the stability and boundary conditions of the system. By considering the expansion work of gas bubbles against the normal pressure stress in the emulsion phase, an improved necessary stability condition is proposed to close a gas鈥搒olid bubbling model. Applying the upgraded gas鈥搒olid bubbling model at the scale of vessels, the steady-state hydrodynamics of gas鈥搒olid bubbling fluidization can be reproduced without introducing bubble-specific empirical correlations such as for diameter and/or acceleration. The unified modeling of the entire gas鈥搒olid fluidization regime from bubbling to fast fluidization is performed by integrating the upgraded gas鈥搒olid bubbling model with the original energy-minimization multiscale (EMMS) model. Incorporating the upgraded gas鈥搒olid bubbling model into commercial computational fluid dynamics (CFD) software at the scale of computational cells, the unsteady-state simulation of gas鈥搒olid bubbling fluidization is realized with a higher accuracy than that based on homogeneous drag models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700