Thermal analysis of clathrates of tripeptide LLL with organic compounds and water
详细信息    查看全文
  • 作者:Marat A. Ziganshin (1)
    Alexander V. Gerasimov (1)
    Valery V. Gorbatchuk (1)
    Aidar T. Gubaidullin (2)

    1. A.M. Butlerov Institute of Chemistry
    ; Kazan Federal University ; Kremlevskaya 18 ; 420008 ; Kazan ; Russia
    2. A.E. Arbuzov Institute of Organic and Physical Chemistry
    ; Akad. Arbuzova ; 8 ; 420088 ; Kazan ; Russia
  • 关键词:Oligopeptide ; Thermal stability ; Thermogravimetry ; Mass spectrometry ; X ; ray powder diffraction ; Structure鈥損roperties relationships
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:119
  • 期:3
  • 页码:1811-1816
  • 全文大小:580 KB
  • 参考文献:1. Self-assembled peptide nanostructures. Castillo J, Sasso L, Svendsen WE, editors. NW: Taylor & Francis Group鈥揃roken Sound Parkway; 2012.
    2. Reches, M, Gazit, E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300: pp. 625-627 CrossRef
    3. Soldatov, DV, Moudrakovski, IL, Grachev, EV, Ripmeester, JA (2006) Micropores in crystalline dipeptides as seen from the crystal structure, He pycnometry, and 129Xe NMR spectroscopy. J Am Chem Soc 128: pp. 6737-6744 CrossRef
    4. Busseron, E, Ruff, Y, Moulin, E, Giuseppone, N (2013) Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5: pp. 7098-7140 CrossRef
    5. Yan, X, Zhu, P, Li, J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39: pp. 1877-1890 CrossRef
    6. Ryu, J, Kim, S-W, Kang, K, Park, CB (2010) Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano 4: pp. 159-164 CrossRef
    7. Ryu, J, Kim, S-W, Kang, K, Park, CB (2010) Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv Mater 22: pp. 5537-5541 CrossRef
    8. Zhao, X, Pan, F, Xu, H, Yaseen, M, Shan, H, Hauser, CAE, Zhang, Sh, Lu, JR (2010) Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 39: pp. 3480-3498 CrossRef
    9. Adler-Abramovich, L, Kol, N, Yanai, I, Barlam, D, Shneck, RZ, Gazit, E, Rousso, I (2010) Self-assembled organic nanostructures with metallic-like stiffness. Angew Chem Int Ed Engl 49: pp. 9939-9942 CrossRef
    10. Burchell, TJ, Soldatov, DV, Ripmeester, JA (2008) Crystal structure of the co-crystal Ala-Val Ala H2O: a layered inclusion compound. J Struct Chem 49: pp. 188-191 CrossRef
    11. Akazome, M, Ueno, Y, Ooiso, H, Ogura, K (2000) Enantioselective inclusion of methyl phenyl sulfoxides and benzyl methyl sulfoxides by (R)-phenylglycyl-(R)-phenylglycine and the crystal structures of the inclusion cavities. J Org Chem 65: pp. 68-76 CrossRef
    12. G枚rbitz, CH (2007) Microporous organic materials from hydrophobic dipeptides. Chem Eur J 13: pp. 1022-1031 CrossRef
    13. Sanchez-Quesada, J, Isler, MP, Ghadiri, MR (2002) Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies. J Am Chem Soc 124: pp. 10004-10005 CrossRef
    14. Adler-Abramovich, L, Reches, M, Sedman, VL, Allen, S, Tendler, SJB, Gazit, E (2006) Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir 22: pp. 1313-1320 CrossRef
    15. Sedman, VL, Adler-Abramovich, L, Allen, S, Gazit, E, Tendler, SJB (2006) Direct observation of the release of phenylalanine from diphenylalanine nanotubes. J Am Chem Soc 128: pp. 6903-6908 CrossRef
    16. Ryu, J, Park, CB (2010) High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks. Biotechnol Bioeng 105: pp. 221-230 CrossRef
    17. Afonso, R, Mendes, A, Gales, L (2012) Peptide-based solids: porosity and zeolitic behavior. J Mater Chem 22: pp. 1709-1723 CrossRef
    18. Comotti, A, Fraccarollo, A, Bracco, S, Beretta, M, Distefano, G, Cossi, M, Marchese, L, Riccardi, C, Sozzani, P (2013) Porous dipeptide crystals as selective CO2 adsorbents: experimental isotherms vs. grand canonical Monte Carlo simulations and MAS NMR spectroscopy. CrystEngComm 15: pp. 1503-1507 CrossRef
    19. Soldatov, DV, Moudrakovski, IL, Ripmeester, JA (2004) Dipeptides as microporous materials. Angew Chem Int Ed Engl 43: pp. 6308-6311 CrossRef
    20. Durao, J, Gales, L (2013) Guest diffusion in dipeptide crystals. CrystEngComm 15: pp. 1532-1535 CrossRef
    21. Tian, J, Thallapally, PK, McGrail, BP (2012) Porous organic molecular materials. CrystEngComm 14: pp. 1909-1919 CrossRef
    22. Zhang, S-Y, Talu, O, Hayhurst, DT (1991) High-pressure adsorption of methane in NaX, MgX, CaX, SrX, and BaX. J Phys Chem 5: pp. 1722-1726 CrossRef
    23. Babarao, R, Hu, Zh, Jiang, J (2007) Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir 23: pp. 659-666 CrossRef
    24. Sozzani, P, Bracco, S, Comotti, A, Ferretti, L, Simonutti, R (2005) Methane and carbon dioxide storage in a porous van der Waals crystal. Angew Chem Int Ed Engl 44: pp. 1816-1820 CrossRef
    25. Kondo, M, Shimamura, M, Noro, SI, Minakoshi, S, Asami, A, Seki, K, Kitagawa, S (2000) Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties. Chem Mater 12: pp. 1288-1299 CrossRef
    26. Galyaltdinov, ShF, Ziganshin, MA, Drapailo, AB, Gorbatchuk, VV (2012) Unusually high selectivity of guest exchange in tert-butylthiacalix[4]arene clathrate producing more thermostable inclusion and memory of guest. J Phys Chem B 116: pp. 11379-11385 CrossRef
    27. Atwood, JL, Barbour, LJ, Jerga, A (2004) A new type of material for the recovery of hydrogen from gas mixtures. Angew Chem Int Ed Engl 43: pp. 2948-2950 CrossRef
    28. Comotti, A, Bracco, S, Distefano, G, Sozzani, P (2009) Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. Chem Commun. 3: pp. 284-286 CrossRef
    29. Guha, S, Banerjee, A (2009) Macroporous materials from self-assembling synthetic cyclic peptide-based compounds and deposition of dipeptide-capped gold nanoparticles on the surfaces. Macromol Chem Phys 210: pp. 1422-1432 CrossRef
    30. Jana, P, Maity, S, Maity, SK, Haldar, D (2011) A new peptide motif in the formation of supramolecular double helices. Chem Commun 47: pp. 2092-2094 CrossRef
    31. Ziganshin, MA, Efimova, IG, Gorbatchuk, VV, Ziganshina, SA, Chuklanov, AP, Bukharaev, AA, Soldatov, DV (2012) Interaction of L-leucyl-L-leucyl- l -leucine thin film with water and organic vapors: receptor properties and related morphology. J Peptide Sci 18: pp. 209-214 CrossRef
    32. Efimova, IG, Ziganshin, MA, Gorbatchuk, VV, Soldatov, DV, Ziganshina, SA, Chuklanov, AP, Bukharaev, AA (2009) Formation of nanoislands on the surface of thin dipeptide films under the effect of vaporous organic compounds. Prot Met Phys Chem Surf 45: pp. 525-528 CrossRef
    33. Ziganshin, MA, Efimova, IG, Bikmukhametova, AA, Gorbachuk, VV, Ziganshina, SA, Chuklanov, AP, Bukharaev, AA (2013) The effect of a substrate on the morphology of dipeptide (L-valyl- l -alanine) films before and after their interaction with pyridine vapor. Prot Met Phys Chem Surf 49: pp. 274-279 CrossRef
    34. Ryu, J, Park, CB (2008) Solid-phase growth of nanostructures from amorphous peptide thin film: effect of water activity and temperature. Chem Mater 20: pp. 4284-4290 CrossRef
    35. Burchell, TJ, Soldatov, DV, Enrighta, GD, Ripmeester, JA (2007) The ability of lower peptides to form co-crystals: inclusion compounds of Leu-Leu-Leu tripeptide with pyridine and picolines. CrystEngComm 9: pp. 922-929 CrossRef
    36. Go, K, Parthasarathy, R (1995) Crystal structure and a twisted and sheet conformation of the tripeptide L-leucyl-L-leucyl- l -leucine monohydrate trimethanol solvate: conformation analysis of tripeptides. Biopolymers 36: pp. 607-614 CrossRef
    37. Armarego WLF, Chai CLL. Purification of laboratory chemicals. Armarego WLF, Chai CLL, editors. 6th ed. Oxford: Butterworth-Heinemann; 2009.
    38. Yakimova, LS, Ziganshin, MA, Sidorov, VA, Kovalev, VV, Shokova, EA, Tafeenko, VA, Gorbatchuk, VV (2008) Molecular recognition of organic vapors by adamantylcalix[4]arene in QCM sensor using partial binding reversibility. J Phys Chem B 112: pp. 15569-15575 CrossRef
    39. Ziganshin, MA, Yakimov, AV, Safina, GD, Solovieva, SE, Antipin, IS, Gorbatchuk, VV (2007) Nonregular structure鈥損roperty relationships for inclusion parameters of tert-butylcalix[5]arene. Org Biomol Chem 5: pp. 1472-1478 CrossRef
    40. Khabibullin, AA, Safina, GD, Ziganshin, MA, Gorbatchuk, VV (2012) Thermal analysis of charge-transfer complex formed by nitrogen dioxide and substituted calix[4]arene: characterization of complexation reversibility. J Therm Anal Calorim 110: pp. 1309-1313 CrossRef
    41. Gatiatulin, AK, Ziganshin, MA, Gorbatchuk, VV (2014) Selective preparation of beta-cyclodextrin clathrates by solid-phase exchange of included tetrahydrofurane for volatile guests in absence of water. J Therm Anal Calorim.
    42. Lange鈥檚 Handbook of Chemistry. 16th ed. James G. Speight, editor. New York: McGraw-Hill Education LLC; 2005. p. 4192.
    43. Nassimbeni, LR (2003) Physicochemical aspects of host-guest compounds. Acc Chem Res 36: pp. 631-637 CrossRef
    44. Logvinenko, VA, Sapchenko, SA, Fedin, VP (2014) Thermal decomposition of inclusion compounds on the base of the metal鈥搊rganic framework [Zn4(dmf)(ur)2(ndc)4]. J Therm Anal Calorim 117: pp. 747-753 CrossRef
    45. Galyaltdinov, SF, Ziganshin, MA, Gubaidullin, AT, Vyshnevsky, SG, Kalchenko, OI, Gorbatchuk, VV (2014) Anti-sieve effect in guest inclusion by thiacalix[4]arene giving a surge in thermal stability of its clathrates prepared by solid-phase guest exchange. CrystEngComm 16: pp. 3781-3787 CrossRef
    46. Logvinenko, V, Drebushchak, V, Pinakov, D, Chekhova, G (2007) Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal Calorim 90: pp. 23-30 CrossRef
    47. Logvinenko, V (2010) Stability of supramolecular compounds under heating thermodynamic and kinetic aspects. J Therm Anal Calorim 101: pp. 577-583 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Clathrates of l-leucyl-l-leucyl-l-leucine tripeptide (LLL) formed in a solid host/guest vapor system have been studied using X-ray powder diffraction and by simultaneous thermogravimetry and differential scanning calorimetry, combined with mass-spectrometric detection of the evolved vapors. A decrease in the thermal stability of the clathrates was observed as the molecular size of bound organic guests increased. Powdered LLL clathrates with pyridine, and unusually benzene, were found to have a higher thermal stability than expected. However, thin films of the tripeptide clathrate LLL with pyridine were less stable at room temperature. These results can be used to predict the thermal stability of clathrates of short-chain oligopeptides with organic compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700