Time-periodic non-Newtonian power-law flow across a triangular prism
详细信息    查看全文
  • 作者:Richa Agarwal ; Amit Dhiman
  • 关键词:Triangular prism ; Unsteady flow ; Non ; Newtonian fluids ; Drag coefficient ; Reynolds number ; Power ; law index ; Strouhal number
  • 刊名:Journal of the Brazilian Society of Mechanical Sciences and Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:38
  • 期:1
  • 页码:227-240
  • 全文大小:2,995 KB
  • 参考文献:1.Chhabra RP, Richardson JF (1999) Non-Newtonian flow in the process industries. Butterworth-Heinemann, Oxford
    2.Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology, 2nd edn. Butterworth-Heinemann, Oxford
    3.Coelho PM, Pinho FT (2003) Vortex shedding in cylinder flow of shear-thinning fluids, I. Identification and demarcation of flow regimes. J Non-Newton Fluid Mech 110:143–176CrossRef MATH
    4.Coelho PM, Pinho FT (2003) Vortex shedding in cylinder flow of shear-thinning fluids, II. Flow characteristics. J Non-Newton Fluid Mech 110:177–193CrossRef MATH
    5.Coelho PM, Pinho FT (2004) Vortex shedding in cylinder flow of shear-thinning fluids, III. Pressure measurements. J Non-Newton Fluid Mech 121:55–68
    6.Sabiri N-E, Chhabra RP, Comiti J, Montillet A (2012) Measurement of shear rate on the surface of a cylinder submerged in laminar flow of power-law fluids. Exp Thermal Fluid Sci 39:167–175CrossRef
    7.Bharti RP, Chhabra RP, Eswaran V (2006) Steady flow of power-law fluids across a circular cylinder. Can J Chem Eng 84:406–421CrossRef
    8.Patnana VK, Bharti RP, Chhabra RP (2009) Two-dimensional unsteady flow of power-law fluids over a cylinder. Chem Eng Sci 64:2978–2999CrossRef
    9.Chhabra RP (2011) Fluid flow and heat transfer from circular and non-circular cylinders submerged in non-Newtonian liquids. Adv Heat Transf 43:289–417CrossRef
    10.Dhiman AK, Chhabra RP, Eswaran V (2006) Steady flow of power-law fluids across a square cylinder. Chem Eng Res Des 84:300–310CrossRef
    11.Sahu AK, Chhabra RP, Eswaran V (2009) Two-dimensional unsteady laminar flow of a power-law fluid across a square cylinder. J Non-Newton Fluid Mech 160:157–167CrossRef MATH
    12.Rao PK, Sahu AK, Chhabra RP (2011) Momentum and heat transfer from a square cylinder in power-law fluids. Int J Heat Mass Transf 54:390–403CrossRef MATH
    13.Jackson CP (1987) A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J Fluid Mech 182:23–45CrossRef MATH
    14.De AK, Dalal A (2006) Numerical simulation of unconfined flow past a triangular cylinder. Int J Numer Meth Fluids 52:801–821CrossRef MATH
    15.Dalal A, Eswaran V, Biswas G (2008) A finite-volume method for Navier-Stokes equations on unstructured meshes. Numer Heat Transf Part B 54:238–259CrossRef
    16.Dhiman A, Shyam R (2011) Unsteady heat transfer from an equilateral triangular cylinder in the unconfined flow regime. ISRN Mech Eng 2011:1–13CrossRef
    17.Zeitoun O, Ali M, Nuhait A (2011) Convective heat transfer around a triangular cylinder in an air cross flow. Int J Thermal Sci 50:1685–1697CrossRef
    18.Chatterjee D, Mondal B (2012) Forced convection heat transfer from an equilateral triangular cylinder at low Reynolds numbers. Heat Mass Transf 48:1575–1587CrossRef
    19.El-Sherbiny S (1983) Flow separation and reattachment over the sides of a 90° triangular prism. J Wind Eng Ind Aerodyn 11:393–403CrossRef
    20.El-Wahed AK, Johnson MW, Sproston JL (1993) Numerical study of vortex shedding from different shaped bluff bodies. Flow Meas Instrum 4:233–240CrossRef
    21.Buresti G, Lombardi G, Talamelli A (1998) Low aspect-ratio triangular prisms in cross-flow: measurements of the wake fluctuating velocity field. J Wind Eng Ind Aerodyn 74–76:463–473CrossRef
    22.Csiba AL, Martinuzzi RJ (2008) Investigation of bluff body asymmetry on the properties of vortex shedding. J Wind Eng Ind Aerodyn 96:1152–1163CrossRef
    23.Iungo GV, Buresti G (2009) Experimental investigation on the aerodynamics loads and wake flow features of low aspect-ratio triangular prisms at different wind directions. J Fluids Struct 25:1119–1135CrossRef
    24.Ali M, Zeitoun O, Nuhait A (2011) Forced convection heat transfer over horizontal triangular cylinder in cross flow. Int J Thermal Sci 50:106–114CrossRef
    25.Goujon-Durand S, Jenffer P, Wesfreid JE (1994) Downstream evolution of the Benard von Karman instability. Phys Rev E 50:308–313CrossRef
    26.Zielinska BJA, Wesfreid JE (1995) On the spatial structure of global modes in wake flow. Phys Fluids 7:1418–1424CrossRef MATH
    27.Wesfreid JE, Goujon-Durand S, Zielinska BJA (1996) Global mode behaviour of the streamwise velocity in wake. J Phys 2:1343–1357
    28.Abbassi H, Turki S, Nasrallah SB (2001) Numerical investigation of forced convection in a plane channel with a built-in triangular prism. Int J Thermal Sci 40:649–658CrossRef
    29.Abbassi H, Turki S, Nasrallah SB (2001) Mixed convection in a plane channel with a built-in triangular prism. Numer Heat Transf Part A 39:307–320CrossRef
    30.De AK, Dalal A (2007) Numerical study of laminar forced convection fluid flow and heat transfer from a triangular cylinder placed in a channel. J Heat Transf 129:646–656CrossRef
    31.Mohsenzedh A, Farhadi M, Sedighi K (2010) Convective cooling of tandem heated triangular cylinders placed in a channel. Thermal Sci 14:183–197
    32.Farhadi M, Sedighi K, Korayem AM (2010) Effect of wall proximity on forced convection in a plane channel with a built-in triangular cylinder. Int J Thermal Sci 49:1010–1018CrossRef
    33.Srikanth S, Dhiman AK, Bijjam S (2010) Confined flow and heat transfer across a triangular cylinder in a channel. Int J Thermal Sci 49:2191–2200CrossRef
    34.Chattopadhyay H (2007) Augmentation of heat transfer in a channel using a triangular prism. Int J Thermal Sci 46:501–505CrossRef
    35.Manay E, Gunes S, Akcadirci E, Ozceyhan V (2010) Numerical analysis of heat transfer and pressure drop in a channel equipped with triangular bodies in side-by-side arrangement. Online J Power Energy Eng 1:85–89
    36.Eiamsa-ard S, Sripattanapipat S, Promvonge P (2012) Numerical heat transfer analysis in turbulent channel flow over a side-by-side triangular prism pair. J Eng Thermophys 21:95–110CrossRef
    37.Prhashanna A, Sahu AK, Chhabra RP (2011) Flow of power-law fluids past an equilateral triangular cylinder: momentum and heat transfer characteristics. Int J Thermal Sci 50:2027–2041CrossRef
    38.Dhiman AK, Kumar S (2013) Non-Newtonian power-law flow across a confined triangular bluff body in a channel, Korean. J Chem Eng 30:33–44
    39.Pinho FT, Oliveira PJ, Miranda JP (2003) Pressure losses in the laminar flow of shear-thinning power-law fluids across a sudden axisymmetric expansion. Int J Heat Fluid Flow 24:747–761CrossRef
    40.Ansys (2009) ANSYS user manual, Ansys, Inc., Canonsburg, PA
    41.Robichaux J, Balachandar S, Vanka SP (1999) Two-dimesional floquet instability of the wake of square cylinder. Phys Fluids 11:560–578MathSciNet CrossRef MATH
    42.Luo SC, Chew YT, Ng YT (2003) Characteristics of square cylinder wake transition flows. Phys Fluids 15:2549–2559CrossRef
    43.Roache PJ (1998) Verification and validation in computational science and engineering. Hermosa Publishers, Albuquerque
    44.Agarwal R, Dhiman A (2014) Flow and heat transfer phenomena across two confined tandem heated triangular bluff bodies. Numer Heat Transf Part A 66:1020–1047CrossRef
    45.Agarwal R, Dhiman A (2015) Confined flow and heat transfer phenomena of non-Newtonian shear-thinning fluids across a pair of tandem triangular bluff bodies. Numer Heat Transf Part A. doi:10.​1080/​10407782.​2014.​977120 (In press)
    46.Bijjam S, Dhiman AK (2012) CFD analysis of two-dimensional non-Newtonian power-law flow across a circular cylinder confined in a channel. Chem Eng Commun 199:767–785CrossRef
  • 作者单位:Richa Agarwal (1)
    Amit Dhiman (1)

    1. Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
  • 刊物主题:Mechanical Engineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1806-3691
文摘
The effects of non-Newtonian power-law fluids on the unsteady unconfined fluid flow characteristics of an equilateral triangular prism are investigated for Reynolds number (Re) ranging from 50 to 150 and power-law index (n) ranging from 0.4 to 1.8. The flow field around a triangular prism is represented by streamline contours. The output parameters such as root-mean-square values of lift and drag coefficients, time-averaged drag and lift coefficients and Strouhal number are calculated. A time-periodic behavior of the flow is observed for the entire range of control parameters studied. An increment in the time-averaged total drag coefficient is observed with the increase in Re for pseudo-plastic and Newtonian fluids. However, for dilatant fluids, a mixed trend is observed when time-averaged total drag coefficient is varied with n. There is an enhancement in the value of Strouhal number with the increase in Re for dilatant fluids, whereas a mixed trend of Strouhal number with Re is noticed for pseudo-plastic fluids. Keywords Triangular prism Unsteady flow Non-Newtonian fluids Drag coefficient Reynolds number Power-law index Strouhal number

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700