Peak shift in honey bee olfactory learning
详细信息    查看全文
  • 作者:Samuel C. Andrew (1)
    Clint J. Perry (1)
    Andrew B. Barron (1)
    Katherine Berthon (1)
    Veronica Peralta (1)
    Ken Cheng (1)
  • 关键词:Peak shift ; Mushroom body ; Olfaction ; Discrimination learning ; Honey bee
  • 刊名:Animal Cognition
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:17
  • 期:5
  • 页码:1177-1186
  • 全文大小:613 KB
  • 参考文献:1. Avarguès-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG (2010) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5:e15370. doi:10.1371/journal.pone.0015370 CrossRef
    2. Bazhenov M, Huerta R, Smith B (2013) A computational framework for understanding decision making through integration of basic learning rules. J Neurosci 33:5686-697 CrossRef
    3. Bicker G, Sch?fer S, Kingan T (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394-97
    4. Cassenaer S, Laurent G (2012) Conditional modulation of spike-timing-dependent plasticity for olfactory learning. Nature 482:47-2. doi:10.1038/nature10776 CrossRef
    5. Cheng K (2002) Generalisation: mechanistic and functional explanations. Anim Cogn 5:33-0 CrossRef
    6. Cheng K, Spetch ML (2002) Spatial generalization and peak shift in humans. Learn Motiv 33:358-89. doi:10.1016/s0023-9690(02)00003-6 CrossRef
    7. Cheng K, Spetch ML, Johnston M (1997) Spatial peak shift and generalization in pigeons. J Exp Psychol Anim Behav Process 23:469-81 CrossRef
    8. Daly K, Chandra S, Durtschi M, Smith BH (2001) The generalization of an olfactory-based conditioned response reveals unique but overlapping odour representations in the moth / Manduca sexta. J Exp Biol 203:3085-095
    9. Deisig N, Lachnit H, Giurfa M (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn Mem 9:112-21 CrossRef
    10. Dyer AG, Rosa MGP, Reser DH (2008) Honeybees can recognise images of complex natural scenes for use as potential landmarks. J Exp Biol 211:1180-186 CrossRef
    11. Gamberale G, Tullberg BS (1996) Evidence for a peak-shift in predator generalization among aposematic prey. Proc R Soc Lond B 263:1329-334 CrossRef
    12. Ghirlanda S, Enquist M (1998) Artificial neural networks as models of stimulus control. Anim Behav 56:1383-389 CrossRef
    13. Ghirlanda S, Enquist M (2003) A century of generalization. Anim Behav 66:15-6 CrossRef
    14. Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19:54-6. doi:10.1101/lm.024711.111 CrossRef
    15. Gronenberg W (1987) Anatomical and physiological properties of feedback neurons of the mushroom bodies in the bee brain. J Exp Biol 46:115-25
    16. Grünewald B (1999a) Morphology of feedback neurons in the mushroom body of the honeybee / Apis mellifera. J Comp Neurol 404:114-26 CrossRef
    17. Grünewald B (1999b) Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee / Apis mellifera. J Comp Physiol A 185:565-76 CrossRef
    18. Grusec T (1968) The peak shift in stimulus generalization: equivalent effects of errors and noncontingent shock. J Exp Anal Behav 11:239-49 CrossRef
    19. Guerrieri F, Schubert M, Sandoz J-C, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3:e60 CrossRef
    20. Hanson HM (1959) Effects of discrimination training on generalization. J Exp Psychol 51:79-8
    21. Hovland CI (1937) The generalisation of conditioned responses. I. The sensory generalisation of conditioned responses with varying frequencies of tone. J Gen Psychol 17:125-48 CrossRef
    22. Huerta R (2012) Learning pattern recognition and decision making in the insect brain. Paper presented at the proceedings of the 12th Granada seminar on computational and statistical physics, La Herradura, Spain
    23. Huerta R, Nowotny T (2009) Fast and robust learning by reinforcement signals: explorations in the insect brain. Neural Comput 24:2473-507 CrossRef
    24. Huerta R, Nowotny T, Garcia-Sanchez M, Abarbanel HDL, Rabinovich MI (2004) Learning classification in the olfactory system of insects. Neural Comput 16:1601-640 CrossRef
    25. Huerta R, Amigo JM, Nowotny T, Elkan C (2012) Inhibition in multiclass classification. Neural Comput 24:2473-507 CrossRef
    26. Ito I, Ong RCY, Raman B, Stopfer M (2008) Sparse odor representation and olfactory learning. Nat Neurosci 11:1177-184. doi:10.1038/nn.2192 CrossRef
    27. Laska M, Galizia C, Giurfa M, Menzel R (1999) Olfactory discrimination ability and odor structure–activity relationships in honeybees. Chem Senses 24:429-38 CrossRef
    28. Leimar O, Tuomi J (1998) Synergistic selection and graded traits. Evol Ecol 12:59-1 CrossRef
    29. Leonard AS, Dornhaus A, Papaj DR (2011) Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. J Exp Biol 214:113-21. doi:10.1242/jeb.047407 CrossRef
    30. Lynn SK, Cnaani J, Papaj DR (2005) Peak shift discrimination learning as a mechanism of signal evolution. Evolution 59:1300-305. doi:10.1554/04-284 CrossRef
    31. Mackintosh MJ (1974) The psychology of animal learning. Academic Press, London
    32. McLaren IPL, Mackintosh NJ (2002) Associative learning and elemental representation: II. Generalization and discrimination. Anim Learn Behav 30:177-00. doi:10.3758/bf03192828 CrossRef
    33. Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8:53-2 CrossRef
    34. Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5:62-1 CrossRef
    35. Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Ann Rev Neurosci 19:379-04 CrossRef
    36. Menzel R, Gumbert A, Kunze J, Shmida A, Vorobyev M (1997) Pollinators-strategies in finding flowers. Isr J Plant Sci 45:141-56 CrossRef
    37. Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 27:11736-1747. doi:10.1523/jneurosci.2216-07.2007 CrossRef
    38. Paldi N, Zilber S, Shafir S (2003) Associative olfactory learning of honeybees to differential rewards in multiple contexts: effect of odor component and mixture similarity. J Chem Ecol 29:2515-538 CrossRef
    39. Pavlov IP (1927) Conditioned reflexes. Oxford University Press, Oxford
    40. Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359-65. doi:10.1126/science.1070502 CrossRef
    41. Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Ann Rev Entomol 58:543-62 CrossRef
    42. Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey bee brain—the neuronal connections of the alpha-lobe. J Comp Neurol 334:444-65. doi:10.1002/cne.903340309 CrossRef
    43. Spence KW (1937) The differential response in animals to stimuli varying within a single dimension. Psychol Rev 44:430-44 CrossRef
    44. Strube-Bloss MF, Nawrot MP, Menzel R (2012) Mushroom body output neurons encode odor–reward associations. J Neurosci 31:3129-140. doi:10.1523/jneurosci.2583-10.2011 CrossRef
    45. Szyszka P, Galkin A, Menzel R (2008) Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body. Front Syst Neurosci 2. Article 3
    46. Terrace HS (1968) Discrimination learning, the peak shift, and behavioral contrast. J Exp Anal Behav 11:727-41 CrossRef
    47. Turner GC, Bazhenov M, Laurent G (2008) Olfactory representations by / Drosophila mushroom body neurons. J Neurophysiol 99:734-46. doi:10.1152/jn.01283.2007 CrossRef
    48. Weary D, Guilford T, Weisman R (1993) A product of discriminative learning may lead to female preferences for elaborate males. Evolution 47:333-36 CrossRef
    49. Wright GA, Kottcamp S, Thompson MGA (2008) Generalization mediates sensitivity to complex odor features in the honeybee. PLoS One 3:e1704. doi:10.1371/journal.pone.0001704 CrossRef
    50. Wright GA, Choudhary AF, Bentley MA (2009) Reward quality influences the development of learned olfactory biases in honeybees. Proc R Soc Lond B 276:2597-604 CrossRef
  • 作者单位:Samuel C. Andrew (1)
    Clint J. Perry (1)
    Andrew B. Barron (1)
    Katherine Berthon (1)
    Veronica Peralta (1)
    Ken Cheng (1)

    1. Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
  • ISSN:1435-9456
文摘
If animals are trained with two similar stimuli such that one is rewarding (S+) and one punishing (S?, then following training animals show a greatest preference not for the S+, but for a novel stimulus that is slightly more different from the S?than the S+ is. This peak shift phenomenon has been widely reported for vertebrates and has recently been demonstrated for bumblebees and honey bees. To explore the nature of peak shift in invertebrates further, here we examined the properties of peak shift in honey bees trained in a free-flight olfactory learning assay. Hexanal and heptanol were mixed in different ratios to create a continuum of odour stimuli. Bees were trained to artificial flowers such that one odour mixture was rewarded with 2 molar sucrose (S+), and one punished with distasteful quinine (S?. After training, bees were given a non-rewarded preference test with five different mixtures of hexanal and heptanol. Following training bees-maximal preference was for an odour mixture slightly more distinct from the S?than the trained S+. This effect was not seen if bees were initially trained with two distinct odours, replicating the classic features of peak shift reported for vertebrates. We propose a conceptual model of how peak shift might occur in honey bees. We argue that peak shift does not require any higher level of processing than the known olfactory learning circuitry of the bee brain and suggest that peak shift is a very general feature of discrimination learning.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700