Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes
详细信息    查看全文
  • 作者:Dmitry G. Kvashnin ; Péter Vancsó ; Liubov Yu. Antipina ; Géza I. Márk…
  • 关键词:gaphene ; antidots ; electronic properties ; DFT
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:8
  • 期:4
  • 页码:1250-1258
  • 全文大小:2,942 KB
  • 参考文献:[1]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang D; Zhang Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-69.View Article
    [2]Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-0453.View Article
    [3]McCann, E.; Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 2013, 76, 056503.View Article
    [4]McCann, E.; Fal’ko, V. I. Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 2006, 96, 086805.View Article
    [5]Chernozatonskii, L. A.; Sorokin, P. B.; Brüning, J. W. Two-dimensional semiconducting nanostructures based on single graphenesheets with lines of adsorbed hydrogen atoms. Appl. Phys. Lett. 2007, 91, 183103.View Article
    [6]Chernozatonskii, L. A.; Sorokin, P. B.; Belova, E. é.; Brüning, J.; Fedorov, A. S. Superlatticesconsisting of “lines-of adsorbed hydrogen atom pairs on graphene. JETP Lett. 2007, 85, 77-1.View Article
    [7]Chernozatonskii, L. A.; Sorokin, P. B. Nanoengineeringstructures on graphenewith adsorbed hydrogen “lines- J. Phys. Chem. C 2010, 114, 3225-229.View Article
    [8]Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.View Article
    [9]Liu, X. F.; Zhang, Z. H.; Guo, W. L. Universal rule on chirality-dependent bandgapsin grapheneantidotlattices. Small 2013, 9, 1405-410.View Article
    [10]Pedersen, T. G.; Flindt, C.; Pedersen, J.; Jauho, A.-P.; Mortensen, N. A.; Pedersen, K. Optical properties of grapheneantidotlattices. Phys. Rev. B 2008, 77, 243431.
    [11]McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403.View Article
    [12]Nemes-Incze, P.; Magda, G.; Kamarás, K.; Biró, L. P. Crystallographicallyselective nanopatterningof grapheneon SiO2. Nano Res. 2010, 3, 110-16.View Article
    [13]Dobrik, G.; Nemes-Incze, P.; Tapasztó, L.; Lambin, P.; Biró, L. P. Nanoscalelithography of graphenewith crystallographic orientation control. Physica E 2012, 44, 971-75.View Article
    [14]Lee, J.-H.; Jang, Y.; Heo, K.; Lee, J.-M.; Choi, S. H.; Joo, W.-J.; Hwang, S. W.; Whang, D. Large-scale fabrication of 2D nanoporousgrapheneusing a thin anodic aluminum oxide etching mask. J. Nanosci.Nanotechnol. 2013, 13, 7401-405.View Article
    [15]Zubeltzu, J.; Chuvilin, A.; Corsetti, F.; Zurutuza, A.; Artacho, E. Knock-on damage in bilayer graphene: Indications for a catalytic pathway. Phys. Rev. B 2013, 88, 245407.View Article
    [16]Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphenenanomesh. Nat. Nanotechnol. 2010, 5, 190-94.View Article
    [17]Dvorak, M.; Oswald, W.; Wu, Z. G. Bandgapopening by patterning graphene. Sci. Rep. 2013, 3, 2289.View Article
    [18]Pedersen, T. G.; Flindt, C.; Pedersen, J.; Mortensen, N. A.; Jauho, A.-P.; Pedersen, K. Grapheneantidotlattices: Designed defects and spin qubits. Phys. Rev. Lett. 2008, 100, 136804.View Article
    [19]Ouyang, F. P.; Peng, S. L.; Liu, Z. F.; Liu, Z. R. Bandgapopening in grapheneantidotlattices: The missing half. ACS Nano 2011, 5, 4023-030.View Article
    [20]Fürst, J. A.; Pedersen, J. G.; Flindt, C.; Mortensen, N. A.; Brandbyge, M.; Pedersen, T. G.; Jauho, A.-P. Electronic properties of grapheneantidotlattices. New J. Phys. 2009, 11, 095020.View Article
    [21]Sinitskii, A.; Tour, J. M. Patterning graphenethrough the self-assembled templates: Toward periodic two-dimensional graphenenanostructures with semiconductor properties. J. Am. Chem. Soc. 2010, 132, 14730-4732.View Article
    [22]Kim, M.; Safron, N. S.; Han, E.; Arnold, M. S.; Gopalan, P. Fabrication and characterization of large-area, semiconducting nanoperforatedgraphenematerials. Nano Lett. 2010, 10, 1125-131.View Article
    [23]Liu, Z.; Suenaga, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphenelayers. Phys. Rev. Lett. 2009, 102, 015501.
    [24]Campos-Delgado, J.; Kim, Y. A.; Hayashi, T.; Morelos-Gómez, A.; Hofmann, M.; Muramatsu, H.; Endo, M.; Terrones, H.; Shull, R. D.; Dresselhaus, M. S.; et al. Thermal stability studies of CVD-grown graphenenanoribbons: Defect annealing and loop formation. Chem.Phys.Lett. 2009, 469, 177-82.View Article
    [25]Algara-Siller, G.; Santana, A.; Onions, R.; Suyetin, M.; Biskupek, J.; Bichoutskaia, E.; Kaiser, U. Electron-beam engineering of single-walled carbon nanotubes from bilayer graphene. Carbon 2013, 65, 80-6.View Article
    [26]Zhan, D.; Liu, L.; Xu, Y. N.; Ni, Z. H.; Yan, J. X.; Zhao, C.; Shen, Z. X. Low temperature edge dynamics of AB-stacked bilayer graphene: Naturally favored closed zigzag edges. Sci. Rep. 2011, 1, 12.View Artic
  • 作者单位:Dmitry G. Kvashnin (1)
    Péter Vancsó (2)
    Liubov Yu. Antipina (3)
    Géza I. Márk (2)
    László P. Biró (2)
    Pavel B. Sorokin (1) (3)
    Leonid A. Chernozatonskii (1)

    1. Emanuel Institute of Biochemical Physics, 4 Kosigina Street, Moscow, 119334, Russia
    2. Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, H-1525, Budapest, P.O. Box 49, Hungary
    3. Technological Institute of Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow, 142190, Russia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
We present a theoretical study of new nanostructures based on bilayered graphene with periodically arranged hexagonal holes (bilayered graphene antidots). Our ab initio calculations show that fabrication of hexagonal holes in bigraphene leads to connection of the neighboring edges of the two graphene layers with formation of a hollow carbon nanostructure sheet which displays a wide range of electronic properties (from semiconductor to metallic), depending on the size of the holes and the distance between them. The results were additionally supported by wave packet dynamical transport calculations based on the numerical solution of the time-dependent Schr?dinger equation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700