Design and development of exome capture sequencing for the domestic pig (Sus scrofa)
详细信息    查看全文
  • 作者:Christelle Robert (10)
    Pablo Fuentes-Utrilla (10) (11)
    Karen Troup (10) (11)
    Julia Loecherbach (10) (11)
    Frances Turner (10) (11)
    Richard Talbot (10) (11)
    Alan L Archibald (10)
    Alan Mileham (12)
    Nader Deeb (13)
    David A Hume (10)
    Mick Watson (10) (11)

    10. The Roslin Institute and Royal (Dick) School of Veterinary Studies
    ; University of Edinburgh ; Easter Bush ; Edinburgh ; EH25 9RG ; UK
    11. Edinburgh Genomics
    ; University of Edinburgh ; Easter Bush ; Edinburgh ; EH25 9RG ; UK
    12. Genus plc
    ; 1525 River Road ; DeForest ; WI ; 53532 ; USA
    13. Genus plc
    ; 100 Bluegrass Commons Blvd. Suite 2200 ; Hendersonville ; TN ; 37075 ; USA
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:818 KB
  • 参考文献:1. Hall, N (2013) After the gold rush. Genome Biol 14: pp. 115 CrossRef
    2. Abecasis, GR, Altshuler, D, Auton, A, Brooks, LD, Durbin, RM, Gibbs, RA, Hurles, ME, McVean, GA (2010) A map of human genome variation from population-scale sequencing. Nature 467: pp. 1061-1073 CrossRef
    3. Choi, M, Scholl, UI, Ji, W, Liu, T, Tikhonova, IR, Zumbo, P, Nayir, A, Bakkaloglu, A, Ozen, S, Sanjad, S, Nelson-Williams, C, Farhi, A, Mane, S, Lifton, RP (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106: pp. 19096-19101 CrossRef
    4. Ng, SB, Buckingham, KJ, Lee, C, Bigham, AW, Tabor, HK, Dent, KM, Huff, CD, Shannon, PT, Jabs, EW, Nickerson, DA, Shendure, J, Bamshad, MJ (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42: pp. 30-35 CrossRef
    5. Bilguvar, K, Ozturk, AK, Louvi, A, Kwan, KY, Choi, M, Tatli, B, Yalnizoglu, D, Tuysuz, B, Caglayan, AO, Gokben, S, Kaymakcalan, H, Barak, T, Bakircioglu, M, Yasuno, K, Ho, W, Sanders, S, Zhu, Y, Yilmaz, S, Dincer, A, Johnson, MH, Bronen, RA, Kocer, N, Per, H, Mane, S, Pamir, MN, Yalcinkaya, C, Kumandas, S, Topcu, M, Ozmen, M, Sestan, N (2010) Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467: pp. 207-210 CrossRef
    6. Worthey, EA, Mayer, AN, Syverson, GD, Helbling, D, Bonacci, BB, Decker, B, Serpe, JM, Dasu, T, Tschannen, MR, Veith, RL, Basehore, MJ, Broeckel, U, Tomita-Mitchell, A, Arca, MJ, Casper, JT, Margolis, DA, Bick, DP, Hessner, MJ, Routes, JM, Verbsky, JW, Jacob, HJ, Dimmock, DP (2011) Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 13: pp. 255-262 CrossRef
    7. Raffan, E, Hurst, LA, Turki, SA, Carpenter, G, Scott, C, Daly, A, Coffey, A, Bhaskar, S, Howard, E, Khan, N, Kingston, H, Palotie, A, Savage, DB, O'Driscoll, M, Smith, C, O'Rahilly, S, Barroso, I, Semple, RK (2011) Early Diagnosis of Werner's Syndrome Using Exome-Wide Sequencing in a Single, Atypical Patient. Front Endocrinol 2: pp. 8 CrossRef
    8. Albert, TJ, Molla, MN, Muzny, DM, Nazareth, L, Wheeler, D, Song, X, Richmond, TA, Middle, CM, Rodesch, MJ, Packard, CJ, Weinstock, GM, Gibbs, RA (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4: pp. 903-905 CrossRef
    9. Hodges, E, Xuan, Z, Balija, V, Kramer, M, Molla, MN, Smith, SW, Middle, CM, Rodesch, MJ, Albert, TJ, Hannon, GJ, McCombie, WR (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39: pp. 1522-1527 CrossRef
    10. Gnirke, A, Melnikov, A, Maguire, J, Rogov, P, LeProust, EM, Brockman, W, Fennell, T, Giannoukos, G, Fisher, S, Russ, C, Gabriel, S, Jaffe, DB, Lander, ES, Nusbaum, C (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27: pp. 182-189 CrossRef
    11. Bainbridge, MN, Wang, M, Burgess, DL, Kovar, C, Rodesch, MJ, D鈥橝scenzo, M, Kitzman, J, Wu, YQ, Newsham, I, Richmond, TA, Jeddeloh, JA, Muzny, D, Albert, TJ, Gibbs, RA (2010) Whole exome capture in solution with 3 Gbp of data. Genome Biol 11: pp. R62 CrossRef
    12. Groenen, MA, Archibald, AL, Uenishi, H, Tuggle, CK, Takeuchi, Y, Rothschild, MF, Rogel-Gaillard, C, Park, C, Milan, D, Megens, HJ, Li, S, Larkin, DM, Kim, H, Frantz, LA, Caccamo, M, Ahn, H, Aken, BL, Anselmo, A, Anthon, C, Auvil, L, Badaoui, B, Beattie, CW, Bendixen, C, Berman, D, Blecha, F, Blomberg, J, Bolund, L, Bosse, M, Botti, S, Bujie, Z (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491: pp. 393-398 CrossRef
    13. Charlier, C, Agerholm, JS, Coppieters, W, Karlskov-Mortensen, P, Li, W, De Jong, G, Fasquelle, C, Karim, L, Cirera, S, Cambisano, N, Ahariz, N, Mullaart, E, Georges, M, Fredholm, M (2012) A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina. PLoS One 7: pp. e43085 CrossRef
    14. Sonstegard, TS, Cole, JB, VanRaden, PM, Van Tassell, CP, Null, DJ, Schroeder, SG, Bickhart, D, McClure, MC (2013) Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle. PLoS One 8: pp. e54872 CrossRef
    15. van der Lende, T, Knol, EF, Leenhouwers, JI (2001) Prenatal development as a predisposing factor for perinatal losses in pigs. Reprod Suppl 58: pp. 247-261
    16. Fairbairn, L, Kapetanovic, R, Sester, DP, Hume, DA (2011) The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukoc Biol 89: pp. 855-871 CrossRef
    17. Lunney, JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3: pp. 179-184 CrossRef
    18. Wernersson, R, Schierup, MH, Jorgensen, FG, Gorodkin, J, Panitz, F, Staerfeldt, HH, Christensen, OF, Mailund, T, Hornshoj, H, Klein, A, Wang, J, Liu, B, Hu, S, Dong, W, Li, W, Wong, GK, Yu, J, Bendixen, C, Fredholm, M, Brunak, S, Yang, H, Bolund, L (2005) Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6: pp. 70 CrossRef
    19. Kapetanovic, R, Fairbairn, L, Beraldi, D, Sester, DP, Archibald, AL, Tuggle, CK, Hume, DA (2012) Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide. J Immunol 188: pp. 3382-3394 CrossRef
    20. Flicek, P, Amode, MR, Barrell, D, Beal, K, Billis, K, Brent, S, Carvalho-Silva, D, Clapham, P, Coates, G, Fitzgerald, S, Gil, L, Giron, CG, Gordon, L, Hourlier, T, Hunt, S, Johnson, N, Juettemann, T, Kahari, AK, Keenan, S, Kulesha, E, Martin, FJ, Maurel, T, McLaren, WM, Murphy, DN, Nag, R, Overduin, B, Pignatelli, M, Pritchard, B, Pritchard, E, Riat, HS (2014) Ensembl 2014. Nucleic Acids Res 42: pp. D749-D755 CrossRef
    21. Sayers, EW, Barrett, T, Benson, DA, Bolton, E, Bryant, SH, Canese, K, Chetvernin, V, Church, DM, Dicuccio, M, Federhen, S, Feolo, M, Fingerman, IM, Geer, LY, Helmberg, W, Kapustin, Y, Krasnov, S, Landsman, D, Lipman, DJ, Lu, Z, Madden, TL, Madej, T, Maglott, DR, Marchler-Bauer, A, Miller, V, Karsch-Mizrachi, I, Ostell, J, Panchenko, A, Phan, L, Pruitt, KD, Schuler, GD (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40: pp. D13-D25 CrossRef
    22. McKenna, A, Hanna, M, Banks, E, Sivachenko, A, Cibulskis, K, Kernytsky, A, Garimella, K, Altshuler, D, Gabriel, S, Daly, M, DePristo, MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: pp. 1297-1303 CrossRef
    23. O鈥橠ell, SD, Day, IN (1998) Insulin-like growth factor II (IGF-II). Int J Biochem Cell Biol 30: pp. 767-771 CrossRef
    24. Van Laere, AS, Nguyen, M, Braunschweig, M, Nezer, C, Collette, C, Moreau, L, Archibald, AL, Haley, CS, Buys, N, Tally, M, Andersson, G, Georges, M, Andersson, L (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: pp. 832-836 CrossRef
    Secondary guidelines for development of national farm animal genetic resources management plans: measurement of domestic animal diversity (MoDAD): original working group report. Food and Agriculture Organization of the United Nations, Rome
    25. Sulonen, AM, Ellonen, P, Almusa, H, Lepisto, M, Eldfors, S, Hannula, S, Miettinen, T, Tyynismaa, H, Salo, P, Heckman, C, Joensuu, H, Raivio, T, Suomalainen, A, Saarela, J (2011) Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol 12: pp. R94 CrossRef
    26. DePristo, MA, Banks, E, Poplin, R, Garimella, KV, Maguire, JR, Hartl, C, Philippakis, AA, Del Angel, G, Rivas, MA, Hanna, M, McKenna, A, Fennell, TJ, Kernytsky, AM, Sivachenko, AY, Cibulskis, K, Gabriel, SB, Altshuler, D, Daly, MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: pp. 491-498 CrossRef
    27. Subramanian, S (2012) The abundance of deleterious polymorphisms in humans. Genetics 190: pp. 1579-1583 CrossRef
    28. Subramanian, S (2012) Quantifying harmful mutations in human populations. Eur J Hum Genet 20: pp. 1320-1322 CrossRef
    29. Picardi, E, Pesole, G (2010) Computational methods for ab initio and comparative gene finding. Methods Mol Biol 609: pp. 269-284 CrossRef
    30. Nielsen, R, Paul, JS, Albrechtsen, A, Song, YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12: pp. 443-451 CrossRef
    31. Liu, Q, Guo, Y, Li, J, Long, J, Zhang, B, Shyr, Y (2012) Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data. BMC Genomics 13: pp. S8
    32. MacArthur, DG, Balasubramanian, S, Frankish, A, Huang, N, Morris, J, Walter, K, Jostins, L, Habegger, L, Pickrell, JK, Montgomery, SB, Albers, CA, Zhang, ZD, Conrad, DF, Lunter, G, Zheng, H, Ayub, Q, DePristo, MA, Banks, E, Hu, M, Handsaker, RE, Rosenfeld, JA, Fromer, M, Jin, M, Mu, XJ, Khurana, E, Ye, K, Kay, M, Saunders, GI, Suner, MM, Hunt, T (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335: pp. 823-828 CrossRef
    33. Shao, H, Bellos, E, Yin, H, Liu, X, Zou, J, Li, Y, Wang, J, Coin, LJ (2013) A population model for genotyping indels from next-generation sequence data. Nucleic Acids Res 41: pp. e46 CrossRef
    34. Andersson, R, Gebhard, C, Miguel-Escalada, I, Hoof, I, Bornholdt, J, Boyd, M, Chen, Y, Zhao, X, Schmidl, C, Suzuki, T, Ntini, E, Arner, E, Valen, E, Li, K, Schwarzfischer, L, Glatz, D, Raithel, J, Lilje, B, Rapin, N, Bagger, FO, Jorgensen, M, Andersen, PR, Bertin, N, Rackham, O, Burroughs, AM, Baillie, JK, Ishizu, Y, Shimizu, Y, Furuhata, E, Maeda, S (2014) An atlas of active enhancers across human cell types and tissues. Nature 507: pp. 455-461 CrossRef
    A promoter-level mammalian expression atlas. Nature 507: pp. 462-470 CrossRef
    35. Carlson, DF, Tan, W, Lillico, SG, Stverakova, D, Proudfoot, C, Christian, M, Voytas, DF, Long, CR, Whitelaw, CB, Fahrenkrug, SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109: pp. 17382-17387 CrossRef
    36. Freeman, TC, Ivens, A, Baillie, JK, Beraldi, D, Barnett, MW, Dorward, D, Downing, A, Fairbairn, L, Kapetanovic, R, Raza, S, Tomoiu, A, Alberio, R, Wu, C, Su, AI, Summers, KM, Tuggle, CK, Archibald, AL, Hume, DA (2012) A gene expression atlas of the domestic pig. BMC Biol 10: pp. 90 CrossRef
    37. Flicek, P, Ahmed, I, Amode, MR, Barrell, D, Beal, K, Brent, S, Carvalho-Silva, D, Clapham, P, Coates, G, Fairley, S, Fitzgerald, S, Gil, L, Garcia-Giron, C, Gordon, L, Hourlier, T, Hunt, S, Juettemann, T, Kahari, AK, Keenan, S, Komorowska, M, Kulesha, E, Longden, I, Maurel, T, McLaren, WM, Muffato, M, Nag, R, Overduin, B, Pignatelli, M, Pritchard, B, Pritchard, E (2013) Ensembl 2013. Nucleic Acids Res 41: pp. D48-D55 CrossRef
    38. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: pp. 403-410 CrossRef
    39. Quinlan, AR, Hall, IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: pp. 841-842 CrossRef
    40. Li, H, Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: pp. 1754-1760 CrossRef
    41. Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G, Abecasis, G, Durbin, R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: pp. 2078-2079 CrossRef
    42. McLaren, W, Pritchard, B, Rios, D, Chen, Y, Flicek, P, Cunningham, F (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26: pp. 2069-2070 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The domestic pig (Sus scrofa) is both an important livestock species and a model for biomedical research. Exome sequencing has accelerated identification of protein-coding variants underlying phenotypic traits in human and mouse. We aimed to develop and validate a similar resource for the pig. Results We developed probe sets to capture pig exonic sequences based upon the current Ensembl pig gene annotation supplemented with mapped expressed sequence tags (ESTs) and demonstrated proof-of-principle capture and sequencing of the pig exome in 96 pigs, encompassing 24 capture experiments. For most of the samples at least 10x sequence coverage was achieved for more than 90% of the target bases. Bioinformatic analysis of the data revealed over 236,000 high confidence predicted SNPs and over 28,000 predicted indels. Conclusions We have achieved coverage statistics similar to those seen with commercially available human and mouse exome kits. Exome capture in pigs provides a tool to identify coding region variation associated with production traits, including loss of function mutations which may explain embryonic and neonatal losses, and to improve genomic assemblies in the vicinity of protein coding genes in the pig.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700