Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model Drosophila
详细信息    查看全文
  • 作者:Jonci Nikolai Wolff (1) (2)
    Peter Sutovsky (3)
    John William Oman Ballard (1)
  • 关键词:mtDNA content ; mtDNA inheritance ; Gamete ; Paternal leakage ; Drosophila
  • 刊名:Cell and Tissue Research
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:353
  • 期:1
  • 页码:195-200
  • 全文大小:227KB
  • 参考文献:1. Aoyagi N, Wassarman DA (2000) Genes encoding / Drosophila melanogaster RNA polymerase II general transcription factors: diversity in TFIIA and TFIID components contributes to gene-specific transcriptional regulation. J Cell Biol 150:F45–F50 CrossRef
    2. Ashburner M, Roote J (2007) Maintenance of a / Drosophila laboratory: general procedures. CSH Protoc 2007:pdb.ip35
    3. Clancy DJ (2008) Variation in mitochondrial genotype has substantial lifespan effects which may be modulated by nuclear background. Aging Cell 7:795-04 CrossRef
    4. Dean MD, Ballard KJ, Glass A, Ballard JWO (2003) Influence of two / Wolbachia strains on population structure of East African / Drosophila simulans. Genetics 165:1959-969
    5. DeLuca SZ, O’Farrell PH (2012) Barriers to male transmission of mitochondrial DNA in sperm development. Dev Cell 22:660-68 CrossRef
    6. Dorus S, Busby SA, Gerike U, Shabanowitz J, Hunt DF, Karr TL (2006) Genomic and functional evolution of the / Drosophila melanogaster sperm proteome. Nat Genet 38:1440-445 CrossRef
    7. Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21-9 CrossRef
    8. Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9:261-65 CrossRef
    9. Immler S, Pitnick S, Parker GA, Durrant KL, Lupold S, Calhim S, Birkhead TR (2011) Resolving variation in the reproductive tradeoff between sperm size and number. Proc Natl Acad Sci USA 108:5325-330 CrossRef
    10. Karr TL (1991) Intracellular sperm/egg interactions in / Drosophila: a three-dimensional structural analysis of a paternal product in the developing egg. Mech Dev 34:101-11 CrossRef
    11. Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI (1990) Incomplete maternal transmission of mitochondrial DNA in / Drosophila. Genetics 126:657-63
    12. Lüpold S, Manier MK, Ala-Honkola O, Belote JM, Pitnick S (2011) Male / Drosophila melanogaster adjust ejaculate size based on female mating status, fecundity, and age. Behav Ecol 22:184-91 CrossRef
    13. Matsuura ET, Fukuda H, Chigusa SI (1991) Mitochondrial DNA heteroplasmy maintained in natural populations of / Drosophila simulans in Reunion. Genet Res 57:123-26 CrossRef
    14. Noguchi T, Koizumi M, Hayashi S (2011) Sustained elongation of sperm tail promoted by local remodeling of giant mitochondria in / Drosophila. Curr Biol 21:805-14 CrossRef
    15. Nunes MDS, Dolezal M, Schl?tterer C (2013) Extensive paternal mtDNA leakage in natural populations of / Drosophila melanogaster. Mol Ecol 22:2106-117 CrossRef
    16. Perotti ME (1973) The mitochondrial derivative of the spermatozoon of / Drosophila before and after fertilization. J Ultrastruct Res 44:181-98 CrossRef
    17. Phillips DM (1970) Insect sperm: their structure and morphogenesis. J Cell Biol 44:243-77 CrossRef
    18. Pitnick S, Karr TL (1998) Paternal products and by-products in / Drosophila development. Proc R Soc Lond [Biol] 265:821-26 CrossRef
    19. PMB (2000) Converter: weight moles (for nucleic acids). Institute of Gene Biology, Moscow
    20. Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A (2009) Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 15:553-72 CrossRef
    21. Sherengul W, Kondo R, Matsuura ET (2006) Analysis of paternal transmission of mitochondrial DNA in / Drosophila. Genes Genet Syst 81:399-04 CrossRef
    22. Snook RR, Cleland SY, Wolfner MF, Karr TL (2000) Offsetting effects of / Wolbachia infection and heat shock on sperm production in / Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155:167-78
    23. Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, Larsson NG (2008) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol 6:e10 CrossRef
    24. Tokuyasu KT (1975) Dynamics of spermiogenesis in / Drosophila melanogaster. VI. Significance of “onion-nebenkern formation. J Ultrastruct Res 53:93-12 CrossRef
    25. Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA (2010) The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83:52-2 CrossRef
    26. Werner M, Simmons LW (2008) Insect sperm motility. Biol Rev 83:191-08 CrossRef
    27. Wolff JN, Gemmell NJ (2008a) Estimating mitochondrial DNA content of chinook salmon spermatozoa using quantitative real-time polymerase chain reaction. Biol Reprod 79:247-52 CrossRef
    28. Wolff JN, Gemmell NJ (2008b) Lost in the zygote: the dilution of paternal mtDNA upon fertilization. Heredity (Edinb) 101:429-34 CrossRef
    29. Wolff JN, White DJ, Woodhams M, White HE, Gemmell NJ (2011) The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates. PLoS One 6:e20522 CrossRef
    30. Wolff JN, Nafisinia M, Sutovsky P, Ballard JWO (2013) Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of / Drosophila simulans. Heredity (Edinb) 110:57-2 CrossRef
  • 作者单位:Jonci Nikolai Wolff (1) (2)
    Peter Sutovsky (3)
    John William Oman Ballard (1)

    1. School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
    2. Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
    3. Division of Animal Sciences, and Departments of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
  • ISSN:1432-0878
文摘
Although crucial to the success of fertilization and embryogenesis, little is known about the mitochondrial DNA (mtDNA) content of mature spermatozoa and oocytes across taxa and across different fertilization systems. Oocytes are assumed to hold a large population of mtDNAs that populate emerging cells during early embryogenesis, whereas spermatozoa harbor only a limited pool of mtDNAs that is believed to sustain functionality but fails to contribute paternal mtDNA to the zygote. Recent work suggests that mature sperm of the genetic model Drosophila melanogaster lack mtDNA, questioning the significance of zygotic mechanisms for the selective elimination of paternal mtDNA and their necessity for fertilization success. This finding further contradicts previous observations of the inheritance of paternal mtDNA in drosophilids. Using quantitative polymerase chain reaction, we estimate the mtDNA content of several laboratory strains of D. melanogaster and D. simulans to shed light on this discrepancy and to describe the mitochondrial/mtDNA load of gametes within this system. These measurements led to an average estimate of 22.91±4.61 mtDNA molecules/copies per spermatozoon across both species and to 1.07E+07±2.71E+06 molecules/copies per oocyte for D. simulans. As a consequence, the ratio of paternal and maternal mtDNA in the zygote was estimated at 1:4.65E+05.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700