Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes
详细信息    查看全文
  • 作者:A. Albrechtsen (1)
    N. Grarup (2)
    Y. Li (3)
    T. Spars? (2)
    G. Tian (4)
    H. Cao (3)
    T. Jiang (3)
    S. Y. Kim (5)
    T. Korneliussen (1)
    Q. Li (3)
    C. Nie (3)
    R. Wu (3)
    L. Skotte (1)
    A. P. Morris (6)
    C. Ladenvall (7)
    S. Cauchi (8)
    A. Stan?áková (9)
    G. Andersen (2)
    A. Astrup (10)
    K. Banasik (2)
    A. J. Bennett (11)
    L. Bolund (12)
    G. Charpentier (13)
    Y. Chen (3)
    J. M. Dekker (14)
    A. S. F. Doney (15) (16)
    M. Dorkhan (7)
    T. Forsen (17) (18)
    T. M. Frayling (19) (20)
    C. J. Groves (11)
    Y. Gui (3)
    G. Hallmans (21)
    A. T. Hattersley (19) (20)
    K. He (22)
    G. A. Hitman (23)
    J. Holmkvist (2) (24)
    S. Huang (25) (3)
    H. Jiang (3)
    X. Jin (3)
    J. M. Justesen (2)
    K. Kristiansen (26)
    J. Kuusisto (9)
    M. Lajer (27)
    O. Lantieri (28)
    W. Li (3)
    H. Liang (3)
    Q. Liao (3)
    X. Liu (3)
    T. Ma (3)
    X. Ma (3)
    M. P. Manijak (2)
    M. Marre (29) (30)
    J. Mokrosiński (2) (31)
    A. D. Morris (15) (16)
    B. Mu (3)
    A. A. Nielsen (32)
    G. Nijpels (14)
    P. Nilsson (33)
    C. N. A. Palmer (15) (16)
    N. W. Rayner (11) (6)
    F. Renstr?m (34)
    R. Ribel-Madsen (2)
    N. Robertson (11) (6)
    O. Rolandsson (21)
    P. Rossing (27)
    T. W. Schwartz (2) (31)
    P. E. Slagboom (35) (36)
    M. Sterner (7)
    M. Tang (3)
    L. Tarnow (27)
    T. Tuomi (37) (38)
    E. van’t Riet (14)
    N. van Leeuwen (39)
    T. V. Varga (34)
    M. A. Vestmar (2) (31)
    M. Walker (40)
    B. Wang (3)
    Y. Wang (3)
    H. Wu (3)
    F. Xi (3)
    L. Yengo (8)
    C. Yu (3)
    X. Zhang (3)
    J. Zhang (3)
    Q. Zhang (3)
    W. Zhang (3)
    H. Zheng (3)
    Y. Zhou (3)
    D. Altshuler (41) (42)
    L. M. ‘t Hart (35) (39)
    P. W. Franks (21) (34) (43)
    B. Balkau (44)
    P. Froguel (45) (8)
    M. I. McCarthy (11) (46) (6)
    M. Laakso (9)
    L. Groop (7)
    C. Christensen (47)
    I. Brandslund (32) (48)
    T. Lauritzen (49)
    D. R. Witte (27)
    A. Linneberg (50)
    T. J?rgensen (50) (51) (52)
    T. Hansen (2) (53)
    J. Wang (2) (26) (3)
    R. Nielsen (1) (5) (54)
    O. Pedersen (2) (55) (56) (57)
  • 关键词:Exome sequencing ; Genetic epidemiology ; Genetics ; Lipids ; Next ; generation sequencing ; Obesity ; Type 2 diabetes
  • 刊名:Diabetologia
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:56
  • 期:2
  • 页码:298-310
  • 全文大小:392KB
  • 参考文献:1. Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590-605 CrossRef
    2. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579-89 CrossRef
    3. Kooner JS, Saleheen D, Sim X et al (2011) Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet 43:984-89 CrossRef
    4. Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105-16 CrossRef
    5. Grarup N, Spars? T, Hansen T (2010) Physiologic characterization of type 2 diabetes-related loci. Curr Diab Rep 10:485-97 CrossRef
    6. Heid IM, Jackson AU, Randall JC et al (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42:949-60 CrossRef
    7. Speliotes EK, Willer CJ, Berndt SI et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937-48 CrossRef
    8. The International Consortium for Blood Pressure Genome-Wide Association Studies (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103-09 CrossRef
    9. Wain LV, Verwoert GC, O'Reilly PF et al (2011) Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 43:1005-011 CrossRef
    10. Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707-13 CrossRef
    11. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747-53 CrossRef
    12. Holm H, Gudbjartsson DF, Sulem P et al (2011) A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat Genet 43:316-20 CrossRef
    13. Albert TJ, Molla MN, Muzny DM et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903-05 CrossRef
    14. Li Y, Vinckenbosch N, Tian G et al (2010) Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet 42:969-72 CrossRef
    15. Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30-5 CrossRef
    16. Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272-76 CrossRef
    17. Sanders SJ, Murtha MT, Gupta AR et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237-41 CrossRef
    18. O'Roak BJ, Deriziotis P, Lee C et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43:585-89 CrossRef
    19. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209-13 CrossRef
    20. World Health Organization Study Group (1999) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Tech. Rep. Ser. WHO/NCD/NCS/99, 2nd edn. World Health Organization, Geneva
    21. Li R, Li Y, Fang X et al (2009) SNP detection for massively parallel whole-genome resequencing. Genome Res 19:1124-132 CrossRef
    22. Kim SY, Lohmueller KE, Albrechtsen A et al (2011) Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinforma 12:231 CrossRef
    23. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904-09 CrossRef
    24. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190-191 CrossRef
    25. Takatsu H, Hase K, Ohmae M et al (2006) CD300 antigen like family member G: a novel Ig receptor like protein exclusively expressed on capillary endothelium. Biochem Biophys Res Commun 348:183-91 CrossRef
    26. Umemoto E, Tanaka T, Kanda H et al (2006) Nepmucin, a novel HEV sialomucin, mediates L-selectin-dependent lymphocyte rolling and promotes lymphocyte adhesion under flow. J Exp Med 203:1603-614 CrossRef
    27. Cannon JP, O'Driscoll M, Litman GW (2012) Specific lipid recognition is a general feature of CD300 and TREM molecules. Immunogenetics 64:39-7 CrossRef
    28. Dehghan A, Je D, Barbalic M et al (2011) Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels/clinical perspective. Circulation 123:731-38 CrossRef
    29. Cooney GJ, Lyons RJ, Crew AJ et al (2004) Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. EMBO J 23:582-93 CrossRef
    30. 1000 Genomes Project Consortium, Durbin RM, Abecasis GR et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061-073 CrossRef
    31. Pasaniuc B, Rohland N, McLaren PJ et al (2012) Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet 44:631-35 CrossRef
    32. Bansal V, Libiger O, Torkamani A, Schork NJ (2010) Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773-85 CrossRef
  • 作者单位:A. Albrechtsen (1)
    N. Grarup (2)
    Y. Li (3)
    T. Spars? (2)
    G. Tian (4)
    H. Cao (3)
    T. Jiang (3)
    S. Y. Kim (5)
    T. Korneliussen (1)
    Q. Li (3)
    C. Nie (3)
    R. Wu (3)
    L. Skotte (1)
    A. P. Morris (6)
    C. Ladenvall (7)
    S. Cauchi (8)
    A. Stan?áková (9)
    G. Andersen (2)
    A. Astrup (10)
    K. Banasik (2)
    A. J. Bennett (11)
    L. Bolund (12)
    G. Charpentier (13)
    Y. Chen (3)
    J. M. Dekker (14)
    A. S. F. Doney (15) (16)
    M. Dorkhan (7)
    T. Forsen (17) (18)
    T. M. Frayling (19) (20)
    C. J. Groves (11)
    Y. Gui (3)
    G. Hallmans (21)
    A. T. Hattersley (19) (20)
    K. He (22)
    G. A. Hitman (23)
    J. Holmkvist (2) (24)
    S. Huang (25) (3)
    H. Jiang (3)
    X. Jin (3)
    J. M. Justesen (2)
    K. Kristiansen (26)
    J. Kuusisto (9)
    M. Lajer (27)
    O. Lantieri (28)
    W. Li (3)
    H. Liang (3)
    Q. Liao (3)
    X. Liu (3)
    T. Ma (3)
    X. Ma (3)
    M. P. Manijak (2)
    M. Marre (29) (30)
    J. Mokrosiński (2) (31)
    A. D. Morris (15) (16)
    B. Mu (3)
    A. A. Nielsen (32)
    G. Nijpels (14)
    P. Nilsson (33)
    C. N. A. Palmer (15) (16)
    N. W. Rayner (11) (6)
    F. Renstr?m (34)
    R. Ribel-Madsen (2)
    N. Robertson (11) (6)
    O. Rolandsson (21)
    P. Rossing (27)
    T. W. Schwartz (2) (31)
    P. E. Slagboom (35) (36)
    M. Sterner (7)
    M. Tang (3)
    L. Tarnow (27)
    T. Tuomi (37) (38)
    E. van’t Riet (14)
    N. van Leeuwen (39)
    T. V. Varga (34)
    M. A. Vestmar (2) (31)
    M. Walker (40)
    B. Wang (3)
    Y. Wang (3)
    H. Wu (3)
    F. Xi (3)
    L. Yengo (8)
    C. Yu (3)
    X. Zhang (3)
    J. Zhang (3)
    Q. Zhang (3)
    W. Zhang (3)
    H. Zheng (3)
    Y. Zhou (3)
    D. Altshuler (41) (42)
    L. M. ‘t Hart (35) (39)
    P. W. Franks (21) (34) (43)
    B. Balkau (44)
    P. Froguel (45) (8)
    M. I. McCarthy (11) (46) (6)
    M. Laakso (9)
    L. Groop (7)
    C. Christensen (47)
    I. Brandslund (32) (48)
    T. Lauritzen (49)
    D. R. Witte (27)
    A. Linneberg (50)
    T. J?rgensen (50) (51) (52)
    T. Hansen (2) (53)
    J. Wang (2) (26) (3)
    R. Nielsen (1) (5) (54)
    O. Pedersen (2) (55) (56) (57)

    1. Centre of Bioinformatics, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
    2. The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DIKU Building, Universitetsparken 1, 2100, Copenhagen ?, Denmark
    3. BGI-Shenzhen, Beishan Industrial Zone, Yantian District, 518083, Shenzhen, China
    4. BGI-Tianjin, Tianjin, China
    5. Department of Integrative Biology, University of California, 3060 Valley Life Sciences, Bldg #3140, Berkeley, CA, 94720-3140, USA
    6. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
    7. Department of Clinical Sciences, Diabetes and Endocrinology, Lund University and Lund University Diabetes Centre, Malm?, Sweden
    8. UMR CNRS 8199, Genomic and Metabolic Disease, Lille, France
    9. Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
    10. Department of Human Nutrition, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
    11. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
    12. Institute of Human Genetics, Aarhus University, Aarhus, Denmark
    13. Department of Endocrinology-Diabetology, Corbeil-Essonnes Hospital, Corbeil-Essonnes, France
    14. EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
    15. Diabetes Research Centre, Biomedical Research Institute, University of Dundee, Ninewells Hospital, Dundee, UK
    16. Pharmacogenomics Centre, Biomedical Research Institute, University of Dundee, Ninewells Hospital, Dundee, UK
    17. Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
    18. Vasa Health Care Center, Vaasa, Finland
    19. Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, UK
    20. Diabetes Genetics, Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, UK
    21. Department of Public Health and Clinical Medicine, Ume? University, Ume?, Sweden
    22. Chinese PLA General Hospital, Beijing, China
    23. Centre for Diabetes, Blizard Institute, Queen Mary University of London, London, UK
    24. Vipergen Aps, Copenhagen, Denmark
    25. School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China
    26. Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
    27. Steno Diabetes Center, Gentofte, Denmark
    28. Institut inter Regional pour la Santé (IRSA), La Riche, France
    29. Department of Endocrinology, Diabetology and Nutrition, Bichat-Claude Bernard University Hospital, Assistance Publique des H?pitaux de Paris, Paris, France
    30. Inserm U695, Université Denis Diderot Paris 7, Paris, France
    31. Laboratory for Molecular Pharmacology, Department of Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    32. Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
    33. Department of Clinical Sciences, Medicine, Lund University, Malm?, Sweden
    34. Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Sk?na University Hospital, Lund University, Malm?, Sweden
    35. Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
    36. Netherlands Center for Healthy Ageing, Leiden, the Netherlands
    37. Department of Medicine, Helsinki University Hospital, Helsinki, Finland
    38. Folkh?lsan Research Center, Helsinki, Finland
    39. Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
    40. Diabetes Research Group, School of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
    41. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
    42. Broad Institute of Harvard and MIT, Cambridge, MA, USA
    43. Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
    44. Inserm CESP U1018, Villejuif, France
    45. Genomic Medicine, Hammersmith Hospital, Imperial College London, London, UK
    46. Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, UK
    47. Department of Internal Medicine and Endocrinology, Vejle Hospital, Vejle, Denmark
    48. Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
    49. Department of General Practice, Aarhus University, Aarhus, Denmark
    50. Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
    51. Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    52. Faculty of Medicine, University of Aalborg, Aalborg, Denmark
    53. Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
    54. Department of Statistics, University of California, Berkeley, CA, USA
    55. Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
    56. Hagedorn Research Institute, Gentofte, Denmark
    57. Institute of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
  • ISSN:1432-0428
文摘
Aims/hypothesis Human complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) >1% with common metabolic phenotypes. Methods The study comprised three stages. We performed medium-depth (8×) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI >27.5?kg/m2 and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p-lt;-.05) with case–control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans. Results Exome sequencing identified 70,182 polymorphisms with MAF >1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p--.5?×-0?4), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p--.2?×-0?1) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p--.2?×-0?0). Conclusions/interpretation We applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700