From a Non-Local Ambrosio-Tortorelli Phase Field to a Randomized Part Hierarchy Tree
详细信息    查看全文
  • 作者:Sibel Tari (1)
    Murat Genctav (1)
  • 关键词:Bridging low level and high level vision ; Shape computation ; Screened Poisson PDE ; Implicit representations ; Linear model for reaction ; diffusion
  • 刊名:Journal of Mathematical Imaging and Vision
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:49
  • 期:1
  • 页码:69-86
  • 全文大小:2,343 KB
  • 参考文献:1. Ambrosio, L., Tortorelli, V.: On the approximation of functionals depending on jumps by elliptic functionals via / Γ-convergence. Commun. Pure Appl. Math. 43(8), 999-036 (1990) CrossRef
    2. Aslan, C., Tari, S.: An axis-based representation for recognition. In: ICCV, pp. 1339-346 (2005)
    3. Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: Shape at its absolute scale. IEEE Trans. Pattern Anal. 30(12), 2188-203 (2008) CrossRef
    4. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: A quantum mechanical approach to shape analysis. In: ICCV—Workshop on Dynamic Shape Capture and Analysis (2011)
    5. Bai, X., Wang, B., Yao, C., Liu, W., Tu, Z.: Co-transduction for shape retrieval. IEEE Trans. Image Process. 21(5), 2747-757 (2012) CrossRef
    6. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of the 8th conference on Visualization (1997)
    7. Ballester, C., Caselles, V., Igual, L., Garrido, L.: Level lines selection with variational models for segmentation and encoding. J.?Math. Imaging Vis. 27(1), 5-7 (2007) CrossRef
    8. Bar, L., Sochen, N., Kiryati, N.: Image deblurring in the presence of impulsive noise. Int. J. Comput. Vis. 70(3), 279-98 (2006) CrossRef
    9. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 32(2), 161-79 (2008) CrossRef
    10. Braides, A.: Approximation of Free-discontinuity Problems. Lecture Notes in Mathematics, vol. 1694. Springer, Berlin (1998)
    11. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, pp. 60-5. Springer, Berlin (2005)
    12. Burgeth, B., Weickert, J., Tari, S.: Minimally stochastic schemes for singular diffusion equations. In: Tai, X.C., Lie, K.A., Chan, T.F., Osher, S. (eds.) Image Processing Based on Partial Differential Equations, Mathematics and Visualization, pp. 325-39. Springer, Berlin (2006)
    13. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266-77 (2001) CrossRef
    14. Cremers, D., Tischh?user, F., Weickert, J., Schn?rr, C.: Diffusion snakes: Introducing statistical shape knowledge into the Mumford-Shah functional. Int. J. Comput. Vis. 50(3), 295-13 (2002) CrossRef
    15. Dimitrov, P., Lawlor, M., Zucker, S.: Distance images and intermediate-level vision. In: SSVM, pp. 653-64. Springer, Berlin (2011)
    16. Droske, M., Rumpf, M.: Multi scale joint segmentation and registration of image morphology. IEEE Trans. Pattern Anal. 29(12), 2181-194 (2007) CrossRef
    17. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511-33 (2002) CrossRef
    18. Erdem, E., Tari, S.: Mumford-Shah regularizer with contextual feedback. J. Math. Imaging Vis. 33(1), 67-4 (2009) CrossRef
    19. Erdem, E., Sancar-Yilmaz, A., Tari, S.: Mumford-Shah regularizer with spatial coherence. In: SSVM, pp. 545-55. Springer, Berlin (2007)
    20. Gebal, K., B?rentzen, J.A., Aan?s, H., Larsen, R.: Shape analysis using the Auto Dinfusion Function. Comput. Graph. Forum 28, 1405-413 (2009) CrossRef
    21. Gilboa, G., Darbon, J., Osher, S., Chan, T.: Nonlocal convex functionals for image regularization. UCLA CAM-report 06-57, (2006)
    22. Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the Poisson equation. IEEE Trans. Pattern Anal. 28(12), 1991-005 (2006) CrossRef
    23. Jin, Y., Jost, J., Wang, G.: A nonlocal version of the Osher-Sol-Vese model. J. Math. Imaging Vis. 44, 99-13 (2012) CrossRef
    24. Jung, M., Vese, L.: Nonlocal variational image deblurring models in the presence of Gaussian or impulse noise. In: SSVM, pp. 401-12. Springer, Berlin (2009)
    25. Jung, M., Bresson, X., Chan, T., Vese, L.: Color image restoration using nonlocal Mumford-Shah regularizers. In: EMMCVPR, pp. 373-87. Springer, Berlin (2009)
    26. Kontschieder, P., Donoser, M., Bischof, H.: Beyond pairwise shape similarity analysis. In: ACCV 2009. Lecture Notes in Computer Science, vol. 5996, pp. 655-66. Springer, Berlin (2010) CrossRef
    27. Lee, T.S., Yuille, A.: Efficient coding of visual scenes by grouping and segmentation. In: Doya, K., Ishii, S., Pouget, A., Rao, R. (eds.) Bayesian Brain: Probabilistic Approaches to Neural Coding, pp. 141-85. MIT Press, New York (2007)
    28. Lee, T.S., Mumford, D., Romero, R., Lamme, V.A.: The role of the primary visual cortex in higher level vision. Vis. Res. 38(15-6), 2429-454 (1998) CrossRef
    29. March, R., Dozio, M.: A variational method for the recovery of smooth boundaries. Image Vis. Comput. 15(9), 705-12 (1997) CrossRef
    30. Meyer, F.: Topographic distance and watershed lines. Signal Process. 38, 113-25 (1994) CrossRef
    31. Morse, S.P.: Concepts of use in contour map processing. Commun. ACM 12(3), 147-52 (1969) CrossRef
    32. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577-85 (1989) CrossRef
    33. Patz, T., Preusser, T.: Ambrosio-Tortorelli segmentation of stochastic images. In: ECCV, pp. 254-67. Springer, Berlin (2010)
    34. Patz, T., Kirby, R., Preusser, T.: Ambrosio-Tortorelli segmentation of stochastic images: model extensions, theoretical investigations and numerical methods. Int. J. Comput. Vis. (2012). doi:10.1007/s11263-012-0578-8 , 23 pp.
    35. Pelillo, M., Siddiqi, K., Zucker, S.: Matching hierarchical structures using association graphs. IEEE Trans. Pattern Anal. 21(11), 1105-120 (1999) CrossRef
    36. Peng, T., Jermyn, I., Prinet, V., Zerubia, J.: Extended phase field higher-order active contour models for networks. Int. J. Comput. Vis. 88(1), 111-28 (2010) CrossRef
    37. Pien, H., Desai, M., Shah, J.: Segmentation of MR images using curve evolution and prior information. Int. J. Pattern Recognit. 11(8), 1233-245 (1997) CrossRef
    38. Preu?er, T., Droske, M., Garbe, C., Rumpf, M., Telea, A.: A phase field method for joint denoising, edge detection and motion estimation. SIAM J. Appl. Math. 68(3), 599-18 (2007) CrossRef
    39. Proesman, M., Pauwels, E., van Gool, L.: Coupled geometry-driven diffusion equations for low-level vision. In: Romeny, B. (ed.) Geometry Driven Diffusion in Computer Vision. Lecture Notes in Computer Science. Kluwer, Amsterdam (1994)
    40. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. Int. J. Comput. Vis. 89(2), 287-08 (2010) CrossRef
    41. Rosin, P.L., West, G.: Salience distance transforms. Graph. Models Image Process. 57(6), 483-21 (1995) CrossRef
    42. Rosman, G., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Nonlinear dimensionality reduction by topologically constrained isometric embedding. Int. J. Comput. Vis. 89(1), 56-8 (2010) CrossRef
    43. Shah, J.: Segmentation by nonlinear diffusion. In: CVPR, pp. 202-07. Springer, Berlin (1991)
    44. Shah, J.: A common framework for curve evolution, segmentation and anisotropic diffusion. In: CVPR, pp. 136-42. Springer, Berlin (1996)
    45. Shah, J.: Skeletons and segmentation of shapes. Tech. rep, Northeastern University (2005). See http://www.math.neu.edu/~shah/publications.html
    46. Shah, J., Pien, H., Gauch, J.: Recovery of shapes of surfaces with discontinuities by fusion of shading and range data within a variational framework. IEEE Trans. Image Process. 5(8), 1243-251 (1996) CrossRef
    47. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signaturebased on heat diffusion. In: Comput. Graph. Forum (2009)
    48. Tari, S.: Hierarchical shape decomposition via level sets. In: ISMM, pp. 215-25. Springer, Berlin (2009)
    49. Tari, S.: Fluctuating distance fields. In: Breuss, M., Bruckestein, A., Maragos, P. (eds.) Innovations in Shape Analysis—Proceedings of Dagstuhl Workshop, Mathematics and Visualization. Springer, Berlin (2013)
    50. Tari, S., Genctav, M.: From a modified Ambrosio-Tortorelli to a randomized part hierarchy tree. In: SSVM, pp. 267-78. Springer, Berlin (2011)
    51. Tari, S., Shah, J.: Local symmetries of shapes in arbitrary dimension. In: ICCV, pp. 1123-128 (1998)
    52. Tari, S., Shah, J., Pien, H.: Extraction of shape skeletons from grayscale images. Comput. Vis. Image Underst. 66(2), 133-46 (1997) CrossRef
    53. Teboul, S., Blanc-Fraud, L., Aubert, G., Barlaud, M.: Variational approach for edge preserving regularization using coupled PDE’s. IEEE Trans. Image Process. 7, 387-97 (1998) CrossRef
    54. Yang, X., Bai, X., Koknar-Tezel, S., Latecki, J.: Densifying distance spaces for shape and image retrieval. J. Math. Imaging Vis. (2012). doi:10.1007/s10851-012-0363-x
    55. Zhu, S.C., Yuille, A.L.: FORMS: a flexible object recognition and modeling system. Int. J. Comput. Vis. 20(3), 187-12 (1996) CrossRef
    56. Zucker, S.: Distance images and the enclosure field: applications in intermediate-level computer and biological vision. In: Breuss, M., Bruckestein, A., Maragos, P. (eds.) Innovations in Shape Analysis—Proceedings of Dagstuhl Workshop, Mathematics and Visualization. Springer, Berlin (2013)
  • 作者单位:Sibel Tari (1)
    Murat Genctav (1)

    1. Middle East Technical University, 06800, Ankara, Turkey
  • ISSN:1573-7683
文摘
In its most widespread imaging and vision applications, Ambrosio and Tortorelli (AT) phase field is a technical device for applying gradient descent to Mumford and Shah simultaneous segmentation and restoration functional or its extensions. As such, it forms a diffuse alternative to sharp interfaces or level sets and parametric techniques. The functionality of the AT field, however, is not limited to segmentation and restoration applications. We demonstrate the possibility of coding parts—features that are higher level than edges and boundaries—after incorporating higher level influences via distances and averages. The iteratively extracted parts using the level curves with double point singularities are organized as a proper binary tree. Inconsistencies due to non-generic configurations for level curves as well as due to visual changes such as occlusion are successfully handled once the tree is endowed with a probabilistic structure. As a proof of concept, we present (1) the most probable configurations from our randomized trees; and?(2)?correspondence matching results between illustrative shape pairs. The work is a significant step towards establishing exponentially decaying diffuse distance fields as bridges between low level visual processing and shape computations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700