Unraveling the characteristics of microRNA regulation in the developmental and aging process of the human brain
详细信息    查看全文
  • 作者:Weiguo Li (1)
    Lina Chen (1)
    Wan Li (1)
    Xiaoli Qu (1)
    Weiming He (2)
    Yuehan He (1)
    Chenchen Feng (1)
    Xu Jia (1)
    Yanyan Zhou (1)
    Junjie Lv (1)
    Binhua Liang (3)
    Binbin Chen (1)
    Jing Jiang (1)
  • 关键词:Human brain ; Development ; Aging ; miRNA ; Synergistic regulation
  • 刊名:BMC Medical Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:6
  • 期:1
  • 全文大小:1,016 KB
  • 参考文献:1. Marsh R, Gerber AJ, Peterson BS: Neuroimaging studies of normal brain development and their relevance for understanding childhood neuropsychiatric disorders. / J Am Acad Child Adolesc Psychiatry 2008, 47:1233鈥?251. CrossRef
    2. Sowell ER, Thompson PM, Toga AW: Mapping changes in the human cortex throughout the span of life. / Neuroscientist 2004, 10:372鈥?92. CrossRef
    3. Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, Janke AL, Rose SE, Semple J, / et al.: Mapping cortical change in Alzheimer鈥檚 disease, brain development, and schizophrenia. / Neuroimage 2004,23(Suppl 1):S2-S18. CrossRef
    4. Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press GA: Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. / Radiology 2000, 216:672鈥?82. CrossRef
    5. Peters A, Sethares C, Luebke JI: Synapses are lost during aging in the primate prefrontal cortex. / Neuroscience 2008, 152:970鈥?81. CrossRef
    6. Salthouse TA: When does age-related cognitive decline begin? / Neurobiol Aging 2009, 30:507鈥?14. CrossRef
    7. Yankner BA, Lu T, Loerch P: The aging brain. / Annu Rev Pathol 2008, 3:41鈥?6. CrossRef
    8. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G: Missing pieces in the Parkinson鈥檚 disease puzzle. / Nat Med 2010, 16:653鈥?61. CrossRef
    9. Lee ST, Kim M: Aging and neurodegeneration. Molecular mechanisms of neuronal loss in Huntington鈥檚 disease. / Mech Ageing Dev 2006, 127:432鈥?35. CrossRef
    10. Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. / Science 2007, 318:1931鈥?934. CrossRef
    11. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R: MicroRNA-373 induces expression of genes with complementary promoter sequences. / Proc Natl Acad Sci U S A 2008, 105:1608鈥?613. CrossRef
    12. Feng W, Feng Y: MicroRNAs in neural cell development and brain diseases. / Sci China Life Sci 2011, 54:1103鈥?112. CrossRef
    13. Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE: Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. / Neurobiol Aging 2011, 32:2316 e2317鈥?327. CrossRef
    14. Makeyev EV, Zhang J, Carrasco MA, Maniatis T: The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. / Mol Cell 2007, 27:435鈥?48. CrossRef
    15. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME: A brain-specific microRNA regulates dendritic spine development. / Nature 2006, 439:283鈥?89. CrossRef
    16. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, / et al.: Identification of miRNA changes in Alzheimer鈥檚 disease brain and CSF yields putative biomarkers and insights into disease pathways. / J Alzheimers Dis 2008, 14:27鈥?1.
    17. Hebert SS, De Strooper B: Alterations of the microRNA network cause neurodegenerative disease. / Trends Neurosci 2009, 32:199鈥?06. CrossRef
    18. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS: Specific microRNAs modulate embryonic stem cell-derived neurogenesis. / Stem Cells 2006, 24:857鈥?64. CrossRef
    19. Persengiev SP, Kondova II, Bontrop RE: The impact of MicroRNAs on brain aging and neurodegeneration. / Curr Gerontol Geriatr Res 2012, 2012:359369. CrossRef
    20. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, / et al.: Identification of hundreds of conserved and nonconserved human microRNAs. / Nat Genet 2005, 37:766鈥?70. CrossRef
    21. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. / Cell 2003, 115:787鈥?98. CrossRef
    22. Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. / Genome Res 2009, 19:92鈥?05. CrossRef
    23. Hermeking H: The miR-34 family in cancer and apoptosis. / Cell Death Differ 2010, 17:193鈥?99. CrossRef
    24. Li Q, Gregory RI: MicroRNA regulation of stem cell fate. / Cell Stem Cell 2008, 2:195鈥?96. CrossRef
    25. Wang S, Olson EN: AngiomiRs鈥搆ey regulators of angiogenesis. / Curr Opin Genet Dev 2009, 19:205鈥?11. CrossRef
    26. Satoh J, Tabunoki H: Comprehensive analysis of human microRNA target networks. / BioData Min 2011, 4:17. CrossRef
    27. Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY, Du L, Zhang YP, / et al.: MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. / Nucleic Acids Res 2011, 39:825鈥?36. CrossRef
    28. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. / Nat Genet 2005, 37:495鈥?00. CrossRef
    29. Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X: Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3鈥?untranslated region. / Oncogene 2010, 29:2302鈥?308. CrossRef
    30. Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, / et al.: MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. / Genome Res 2010, 20:1207鈥?218. CrossRef
    31. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. / Nat Methods 2008, 5:621鈥?28. CrossRef
    32. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. / Cell 2005, 120:15鈥?0. CrossRef
    33. Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. / Nucleic Acids Res 2008, 36:D149-D153. CrossRef
    34. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, / et al.: DIANA-microT web server: elucidating microRNA functions through target prediction. / Nucleic Acids Res 2009, 37:W273-W276. CrossRef
    35. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. / RNA 2004, 10:1507鈥?517. CrossRef
    36. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. / Cell 2006, 126:1203鈥?217. CrossRef
    37. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. / Nat Genet 2007, 39:1278鈥?284. CrossRef
    38. Wang X, El Naqa IM: Prediction of both conserved and nonconserved microRNA targets in animals. / Bioinformatics 2008, 24:325鈥?32. CrossRef
    39. Bandyopadhyay S, Mitra R: TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. / Bioinformatics 2009, 25:2625鈥?631. CrossRef
    40. Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. / Genome Biol 2010, 11:R90. CrossRef
    41. Faraway J: / Practical Regression and ANOVA Using R. 2002. http://cranr-projectorg/doc/contrib/Faraway-PRApdf
    42. Somel M, Franz H, Yan Z, Lorenc A, Guo S, Giger T, Kelso J, Nickel B, Dannemann M, Bahn S, / et al.: Transcriptional neoteny in the human brain. / Proc Natl Acad Sci USA 2009, 106:5743鈥?748. CrossRef
    43. Storey JD, Tibshirani R: Statistical significance for genomewide studies. / Proc Natl Acad Sci USA 2003, 100:9440鈥?445. CrossRef
    44. Barabasi AL, Oltvai ZN: Network biology: understanding the cell鈥檚 functional organization. / Nat Rev Genet 2004, 5:101鈥?13. CrossRef
    45. Palla G, Derenyi I, Farkas I, Vicsek T: Uncovering the overlapping community structure of complex networks in nature and society. / Nature 2005, 435:814鈥?18. CrossRef
    46. Barabasi AL, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. / Nat Rev Genet 2011, 12:68. CrossRef
    47. Goldberg DS, Roth FP: Assessing experimentally derived interactions in a small world. / Proc Natl Acad Sci USA 2003, 100:4372鈥?376. CrossRef
    48. Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh J: Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. / Neuropathol Appl Neurobiol 2010, 36:320鈥?30. CrossRef
    49. Podolska A, Kaczkowski B, Kamp Busk P, Sokilde R, Litman T, Fredholm M, Cirera S: MicroRNA expression profiling of the porcine developing brain. / PLoS One 2011, 6:e14494. CrossRef
    50. Gokhale A, Kunder R, Goel A, Sarin R, Moiyadi A, Shenoy A, Mamidipally C, Noronha S, Kannan S, Shirsat NV: Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. / J Cancer Res Ther 2010, 6:521鈥?29. CrossRef
    51. Pinsonneault JK, Han DD, Burdick KE, Kataki M, Bertolino A, Malhotra AK, Gu HH, Sadee W: Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder. / Neuropsychopharmacology 2011, 36:1644鈥?655. CrossRef
    52. Stringham EG, Schmidt KL: Navigating the cell: UNC-53 and the navigators, a family of cytoskeletal regulators with multiple roles in cell migration, outgrowth and trafficking. / Cell Adh Migr 2009, 3:342鈥?46. CrossRef
    53. Sheen VL, Ganesh VS, Topcu M, Sebire G, Bodell A, Hill RS, Grant PE, Shugart YY, Imitola J, Khoury SJ, / et al.: Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. / Nat Genet 2004, 36:69鈥?6. CrossRef
    54. Saetre P, Jazin E, Emilsson L: Age-related changes in gene expression are accelerated in Alzheimer鈥檚 disease. / Synapse 2011, 65:971鈥?74. CrossRef
    55. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1755-8794/6/55/prepub
  • 作者单位:Weiguo Li (1)
    Lina Chen (1)
    Wan Li (1)
    Xiaoli Qu (1)
    Weiming He (2)
    Yuehan He (1)
    Chenchen Feng (1)
    Xu Jia (1)
    Yanyan Zhou (1)
    Junjie Lv (1)
    Binhua Liang (3)
    Binbin Chen (1)
    Jing Jiang (1)

    1. College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
    2. Institute of Opto-electronics, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
    3. National Microbology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
  • ISSN:1755-8794
文摘
Background Structure and function of the human brain are subjected to dramatic changes during its development and aging. Studies have demonstrated that microRNAs (miRNAs) play an important role in the regulation of brain development and have a significant impact on brain aging and neurodegeneration. However, the underling molecular mechanisms are not well understood. In general, development and aging are conventionally studied separately, which may not completely address the physiological mechanism over the entire lifespan. Thus, we study the regulatory effect between miRNAs and mRNAs in the developmental and aging process of the human brain by integrating miRNA and mRNA expression profiles throughout the lifetime. Methods In this study, we integrated miRNA and mRNA expression profiles in the human brain across lifespan from the network perspective. First, we chose the age-related miRNAs by polynomial regression models. Second, we constructed the bipartite miRNA-mRNA regulatory network by pair-wise correlation coefficient analysis between miRNA and mRNA expression profiles. At last, we constructed the miRNA-miRNA synergistic network from the miRNA-mRNA network, considering not only the enrichment of target genes but also GO function enrichment of co-regulated target genes. Results We found that the average degree of age-related miRNAs was significantly higher than that of non age-related miRNAs in the miRNA-mRNA regulatory network. The topological features between age-related and non age-related miRNAs were significantly different, and 34 reliable age-related miRNA synergistic modules were identified using Cfinder in the miRNA-miRNA synergistic network. The synergistic regulations of module genes were verified by reviewing miRNA target databases and previous studies. Conclusions Age-related miRNAs play a more important role than non age-related mrRNAs in the developmental and aging process of the human brain. The age-related miRNAs have synergism, which tend to work together as small modules. These results may provide a new insight into the regulation of miRNAs in the developmental and aging process of the human brain.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700