Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots
详细信息    查看全文
  • 作者:Guo Zhi Jia ; Wen Kai Lou ; Fang Cheng ; Xiong Long Wang ; Jiang Hong Yao…
  • 关键词:cation exchange ; quantum dots ; photothermal ; type ; II heterostructure ; CdSe/Bi2Se3
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:8
  • 期:5
  • 页码:1443-1453
  • 全文大小:2,176 KB
  • 参考文献:[1]Zhang, W. C.; Li, Q.; Qiu, M. A plasmon ruler based on nanoscale photothermal effect. Opt. Express 2013, 21, 172鈥?81.View Article
    [2]Ting, L.; Tian, J. G.; Chen, Z. L.; Liang, Y.; Liu, J.; Liu, S.; Li, J. H.; Zhan, J. H.; Yang, X. S. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells. Nanotechnology 2014, 25, 345103.View Article
    [3]Yim, J. Y.; Kim, H.; Ryu, S.; Song, S. W.; Kim, H. O.; Hyun, K.-A.; Jung, H.-I.; Joo, C. Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes. Biosens. Bioelectron. 2014, 57, 59鈥?4.View Article
    [4]Strzalkowski, K.; Zakrzewski, J.; Mali艅ski, M. Determination of the exciton binding energy using photothermal and photoluminescence spectroscopy. Int. J. Thermophys. 2013, 34, 691鈥?00.View Article
    [5]Wang, Z. Z.; Chen, Z. W.; Liu, Z.; Shi, P.; Dong, K.; Ju, E. G.; Ren, J. S.; Qu, X. G. A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials 2014, 35, 9678鈥?688.View Article
    [6]Byeon, J. H.; Kim, Y.-W. Au-TiO2 nanoscale heterodimers synthesis from an ambient spark discharge for efficient photocatalytic and photothermal activity. ACS Appl. Mater. Interfaces 2014, 6, 763鈥?67.View Article
    [7]Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. J.; Xia, Y. N. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6, 811鈥?17.View Article
    [8]Chu, M. Q.; Pan, X. J.; Zhang, D.; Wu, Q.; Peng, J. L.; Hai, W. X. The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy. Biomaterials 2012, 33, 7071鈥?083.View Article
    [9]Cole, J. R.; Mirin, N. A.; Knight, M. W.; Goodrich, G. P.; Halas, N. J. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J. Phys. Chem. C 2009, 113, 12090鈥?2094.View Article
    [10]Dickerson, E. B.; Dreaden, E. C.; Huang, X. H.; El-Sayed, I. H.; Chu, H. H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008, 269, 57鈥?6.View Article
    [11]Fisher, J. W.; Sarkar, S.; Buchanan, C. F.; Szot, C. S.; Whitney, J.; Hatcher, H. C.; Torti, S. V.; Rylander, C. G.; Rylander, M. N. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res. 2010, 70, 9855鈥?864.View Article
    [12]Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560鈥?566.View Article
    [13]Huang, X. Q.; Tang, S. H.; Liu, B. J.; Ren, B.; Zheng, N. F. Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture. Adv. Mater. 2011, 23, 3420鈥?425.View Article
    [14]Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E.-K.; Park, H.; Suh, J.-S.; Lee, K.; Yoo, K.-H.; Kim, E.-K.; et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. 2011, 50, 441鈥?44.View Article
    [15]Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578鈥?586.View Article
    [16]Lambert, T. N.; Andrews, N. L.; Gerung, H.; Boyle, T. J.; Oliver, J. M.; Wilson, B. S.; Han, S. M. Water-soluble germanium(0) nanocrystals: Cell recognition and near-infrared photothermal conversion properties. Small 2007, 3, 691鈥?99.View Article
    [17]Tang, S. H.; Huang, X. Q.; Zheng, N. F. Silica coating improves the efficacy of Pd nanosheets for photothermal therapy of cancer cells using near infrared laser. Chem. Commun. 2011, 47, 3948鈥?950.View Article
    [18]Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761鈥?771.View Article
    [19]Tian, Q. W.; Tang, M. H.; Sun, Y. G.; Zou, R. J.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 2011, 23, 3542鈥?547.View Article
    [20]Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S.-T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano. Lett. 2010, 10, 3318鈥?323.View Article
    [21]Lim, D.-K.; Barhoumi, A.; Wylie, R. G.; Reznor, G.; Langer, R. S.; Kohane, D. S. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett. 2013, 13, 4075鈥?079.View Article
    [22]Li, J.; Jiang, F.; Yang, B.; Song, X.-R.; Liu, Y.; Yang, H.-H.; Cao, D.-R.; Shi, W.-R.; Chen, G.-N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.
    [23]Ai, K. L.; Liu, Y. L.; Liu, J. H.; Yuan, Q. H.; He, Y. Y.; Lu, L. H. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 2011, 23, 4886鈥?891.View Article
    [24]Kinsella, J. M.; Jimenez, R. E.; Karmali, P. P.; Rush, A. M.; Kotamraju, V. R.; Gianneschi, N. C.; Ruoslahti, E.; Stupack, D.; Sailor, M. J. X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 12308鈥?2311.View Article
    [25]Rabin, O.; Perez, J. M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118鈥?22.View Article
    [26]Chang, K.; Lou, W.-K. Helical quantum states in HgTe quantum dots with inverted band structures. Phys. Rev. Lett. 2011, 106, 206802.View Article
    [27]Kim, N.; Lee, P.; Kim, Y.; Kim, J. S.; Kim, Y.; Noh, D. Y.; Yu, S. U.; Chung, J.; Kim, K. S. Persistent topological surface state at the interface of Bi2Se3 film grown on patterned graphene. ACS Nano 2014, 8, 1154鈥?160.View Article
    [28]Liu, H. W.; Jiang, H.; Sun, Q.-F.; Xie, X. C. Dephasing effect on backscattering of helical surface states in 3D topological insulators. Phys. Rev. Lett. 2014, 113, 046805.View Article
    [29]Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194鈥?98.View Article
    [30]Reijnders, A. A.; Tian, Y.; Sandilands, L. J.; Pohl, G.; Kivlichan, I. D.; Zhao, S. Y. F.; Jia, S.; Charles, M. E.; Cava, R. J.; Alidoust, N.; et al. Optical evidence of surface state suppression in Bi-based topological insulators. Phys. Rev. B 2014, 89, 075138.View Article
    [31]Wang, L.-L.; Huang, M. L.; Thimmaiah, S.; Alam, A.; Bud鈥檏o, S. L.; Kaminski, A.; Lograsso, T. A.; Canfield, P.; Johnson, D. D. Native defects in tetradymite Bi2(TexSe3鈭?em class="EmphasisTypeItalic">x ) topological insulators. Phys. Rev. B 2013, 87, 125303.View Article
    [32]Ghaemi, P.; Mong, R. S. K.; Moore, J. E. In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi2Te3 and Bi2Se3. Phys. Rev. Lett. 2010, 105, 166603.View Article
    [33]Ghosh, S.; Dutta, S.; Gomes, E.; Carroll, D.; D鈥橝gostino, R.; Olson, J.; Guthold, M.; Gmeiner, W. H. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 2009, 3, 2667鈥?673.View Article
    [34]Chen, J. Y.; Yang, M. X.; Zhang, Q.; Cho, E. C.; Cobley, C. M.; Kim, C.; Glaus, C.; Wang, L. H. V.; Welch, M. J.; Xia, Y. N. Gold nanocages: A novel class of multifunctional nanomaterials for theranostic applications. Adv. Funct. Mater. 2010, 20, 3684鈥?694.View Article
    [35]Chen, H. J.; Shao, L.; Ming, T.; Sun, Z. H.; Zhao, C. M.; Yang, B. C.; Wang, J. F. Understanding the photothermal conversion efficiency of gold nanocrystals. Small 2010, 6, 2272鈥?280.View Article
    [36]Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689鈥?696.View Article
    [37]Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636鈥?641.View Article
    [38]Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small 2009, 5, 701鈥?08.View Article
    [39]Loo, C.; Lin, A.; Hirsch, L.; Lee, M.-H.; Barton, J.; Halas, N. J.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 2004, 3, 33鈥?0.View Article
    [40]Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132鈥?135.View Article
    [41]Chen, C.-C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P. Size dependence of structural metastability in semiconductor nanocrystals. Science 1997, 276, 398鈥?01.View Article
    [42]Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009鈥?012.View Article
    [43]Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 2007, 129, 11708鈥?1719.View Article
    [44]Chen, C.-Y.; Cheng, C.-T.; Lai, C.-W.; Hu, Y.-H.; Chou, P.-T.; Chou, Y.-H.; Chiu, H.-T. Type-II CdSe/CdTe/ZnTe (core-shell-shell) quantum dots with cascade band edges: The separation of electron (at CdSe) and hole (at ZnTe) by the CdTe layer. Small 2005, 1, 1215鈥?220.View Article
    [45]Allione, M.; Ballester, A.; Li, H. B.; Comin, A.; Movilla, J. L.; Climente, J. I.; Manna, L.; Moreels, I. Two-photon-induced blue shift of core and shell optical transitions in colloidal CdSe/CdS quasi-type II quantum rods. ACS Nano 2013, 7, 2443鈥?452.View Article
    [46]Zhu, H. M.; Song, N. H.; Lian, T. Q. Wave function engineering for ultrafast charge separation and slow charge recombination in type-II core/shell quantum dots. J. Am. Chem. Soc. 2011, 133, 8762鈥?771.View Article
    [47]Balet, L. P.; Ivanov, S. A.; Piryatinski, A.; Achermann, M.; Klimov, V. I. Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Lett. 2004, 4, 1485鈥?488.View Article
    [48]Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y.; et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584鈥?88.View Article
    [49]Vargas, A.; Basak, S.; Liu, F. Z.; Wang, B. K.; Panaitescu, E.; Lin, H.; Markiewicz, R.; Bansil, A.; Kar, S. The changing colors of a quantum-confined topological insulator. ACS Nano 2014, 8, 1222鈥?230.View Article
    [50]Smith, A. M.; Mohs, A. M.; Nie, S. M. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56鈥?3.View Article
    [51]Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125, 11466鈥?1467.View Article
    [52]Bang, J.; Park, J.; Lee, J. H.; Won, N.; Nam, J.; Lim, J.; Chang, B. Y.; Lee, H. J.; Chon, B.; Shin, J.; et al. ZnTe/ZnSe (core/shell) type-II quantum dots: Their optical and photovoltaic properties. Chem. Mater. 2010, 22, 233鈥?40.View Article
    [53]Chang, K.; Xia, J.-B. Spatially separated excitons in quantumdot quantum well structures. Phys. Rev. B 1998, 57, 9780鈥?786.View Article
    [54]Nemchinov, A.; Kirsanova, M.; Hewa-Kasakarage, N. N.; Zamkov, M. Synthesis and characterization of type-II ZnSe/CdS core/shell nanocrystals. J. Phys. Chem. C 2008, 112, 9301鈥?307.View Article
    [55]Oron, D.; Kazes, M.; Banin, U. Multiexcitons in type-II colloidal semiconductor quantum dots. Phys. Rev. B 2007, 75, 035330.View Article
  • 作者单位:Guo Zhi Jia (1) (2)
    Wen Kai Lou (1)
    Fang Cheng (3)
    Xiong Long Wang (4)
    Jiang Hong Yao (4)
    Ning Dai (5)
    Hai Qing Lin (6)
    Kai Chang (1)

    1. Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing, 100083, China
    2. Tianjin Chengjian University, Tianjin, 300384, China
    3. Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, 410004, China
    4. Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics School, Nankai University, Tianjin, 300457, China
    5. Inst Tech Phys, Nat Lab Infrared Phys, Chinese Academy of Sciences, Shanghai, 200083, China
    6. Beijing Computational Science Research Center, Beijing, 100084, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Water-dispersed CdSe/Bi2Se3 core/shell QDs with a photothermal conversion coefficient of 27.09% have been synthesized by a cation exchange reaction. The microstructure and crystal structure of the QDs, which were confirmed by TEM and XRD, showed that partial cation exchange occurred inside the CdSe QDs. Two main mechanisms are responsible for the excellent photothermal conversion: inhibition of radiative recombination of carriers due to the formation of type-II semiconductor heterostructures, and the large surface-to-volume ratio of the QDs. Photothermal conversion experiments indicated that the CdSe/Bi2Se3 QDs showed high photothermal conversion efficiency and excellent NIR photostability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700