Functional genomic analysis of Hawaii marine metagenomes
详细信息    查看全文
  • 作者:Xiaoqi Wang (1) (2)
    Qi Wang (1) (2)
    Xiao Guo (2)
    Luying Liu (1) (2)
    Jiangtao Guo (1) (2)
    Jinxian Yao (3)
    Huaiqiu Zhu (1) (2)

    1. Department of Biomedical Engineering
    ; College of Engineering ; Peking University ; Beijing ; 100871 ; China
    2. Center for Quantitative Biology
    ; Peking University ; Beijing ; 100871 ; China
    3. School of Life Sciences
    ; Peking University ; Beijing ; 100871 ; China
  • 关键词:Marine microorganism ; Metagenome ; Gene annotation ; Codon usage bias ; Metabolic pathway ; 娴锋磱寰敓鐗?/li> 瀹忓熀鍥犵粍 ; 鍩哄洜鍔熻兘娉ㄩ噴 ; 瀵嗙爜瀛愬亸濂?/li> 浠h阿閫氳矾
  • 刊名:Chinese Science Bulletin
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:60
  • 期:3
  • 页码:348-355
  • 全文大小:541 KB
  • 参考文献:1. Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored 鈥渞are biosphere鈥? Proc Natl Acad Sci USA 103:12115鈥?2120 CrossRef
    2. Kennedy J, Flemer B, Jackson SA et al (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8:608鈥?28 CrossRef
    3. Wang FP, Lu SL, Orcutt BN et al (2013) Discovering the roles of subsurface microorganisms: progress and future of deep biosphere investigation. Chin Sci Bull 58:456鈥?67 CrossRef
    4. Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:REVIEWS0003 CrossRef
    5. Giovannoni SJ, Rappe MS, Vergin KL et al (1996) 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proc Natl Acad Sci USA 93:7979鈥?984 CrossRef
    6. Martin-Cuadrado AB, Lopez-Garcia P, Alba JC et al (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One 2:e914 CrossRef
    7. Biddle JF, Fitz-Gibbon S, Schuster SC et al (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105:10583鈥?0588 CrossRef
    8. Delong EF, Preston CM, Mincer T et al (2006) Community genomics among stratified microbial assemblages in the ocean鈥檚 interior. Science 311:496鈥?03 CrossRef
    9. Kunin V, Copeland A, Lapidus A et al (2008) A bioinformatician鈥檚 guide to metagenomics. Microbiol Mol Biol Rev 72:557鈥?78 CrossRef
    10. Liu YC, Guo JT, Hu GQ et al (2013) Gene prediction in metagenomic fragments based on the SVM algorithm. BMC Bioinform 14:S12 CrossRef
    11. Hu GQ, Guo JT, Liu YC et al (2009) MetaTISA: Metagenomic translation initiation site annotator for improving gene start prediction. Bioinformatics 25:1843鈥?845 CrossRef
    12. Lai BB, Ding RG, Li Y et al (2012) A / de novo metagenomic assembly program for shotgun DNA reads. Bioinformatics 28:1455鈥?462 CrossRef
    13. Markowitz VM, Chen IMA, Chu K et al (2012) IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 40:D123鈥揇129 CrossRef
    14. Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41 CrossRef
    15. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27鈥?0 CrossRef
    16. Sharp PM, Li WH (1987) The Codon Adaptation Index鈥攁 measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281鈥?295 CrossRef
    17. Sun ZX, Sang LJ, Ju LN et al (2008) A new method for splice site prediction based on the sequence patterns of splicing signals and regulatory elements. Chin Sci Bull 53:3331鈥?340 CrossRef
    18. Zhu H, Hu GQ, Yang YF et al (2007) MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes. BMC Bioinform 8:97 CrossRef
    19. Sau K, Deb A (2009) Temperature influences synonymous codon and amino acid usage biases in the phages infecting extremely thermophilic prokaryotes. In Silico Biol 9:1鈥?
    20. Noguchi H, Taniguchi T, Itoh T (2008) MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 15:387鈥?96 CrossRef
    21. Pedros-Alio C (2006) Marine microbial diversity: Can it be determined? Trends Microbiol 14:257鈥?63 CrossRef
    22. Vieira-Silva S, Rocha EPC (2010) The systemic imprint of growth and its uses in ecological (meta) genomics. PLoS Genet 6:e1000808 CrossRef
    23. Gouy M, Gautier C (1982) Codon usage in bacteria鈥攃orrelation with gene expressivity. Nucleic Acids Res 10:7055鈥?074 CrossRef
    24. Sharp PM, Bailes E, Grocock RJ et al (2005) Variation in the strength of selected codon usage bias among bacteria. Nucl Acids Res 33:1141鈥?153 CrossRef
    25. Benson AA (2002) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73:31鈥?9
    26. Bustos SA, Schaefer MR, Golden SS (1990) Different and rapid responses of four cyanobacterial psbA transcripts to changes in light intensity. J Bacteriol 172:1998鈥?004
    27. Tsinoremas NF, Schaefer MR, Golden SS (1994) Blue and red light reversibly control psbA expression in the cyanobacterium Synechococcus sp. strain PCC 7942. J Biol Chem 269:16143鈥?6147
    28. Kulkarni RD, Golden SS (1994) Adaptation to high light intensity in Synechococcus sp. strain PCC 7942: regulation of three / psbA genes and two forms of the D1 protein. J Bacteriol 176:959鈥?65
    29. Kos PB, Deak Z, Cheregi O et al (2008) Differential regulation of psbA and psbD gene expression, and the role of the different D1 protein copies in the cyanobacterium / Thermosynechococcus elongatus BP-1. Biochim Biophys Acta 1777:74鈥?3 CrossRef
    30. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731鈥?739 CrossRef
    31. Herter SM, Schiltz E, Drews G (1997) Protein and gene structure of the NADH-binding fragment of / Rhodobacter capsulatus NADH:ubiquinone oxidoreductase. Eur J Biochem FEBS 246:800鈥?08 CrossRef
    32. Unden G, Bongaerts J (1997) Alternative respiratory pathways of / Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. BBA-Bioenerg 1320:217鈥?34 CrossRef
    33. Wackwitz B, Bongaerts J, Goodman SD et al (1999) Growth phase-dependent regulation of nuoA-N expression in / Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance. Mol Gen Genet 262:876鈥?83 CrossRef
    34. Kelly DP (1990) Organic sulfur-compounds in the environment鈥攂iogeochemistry, microbiology, and ecological aspects. Adv Microb Ecol 11:345鈥?85 CrossRef
    35. Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157鈥?173 CrossRef
    36. Delong EF, Yayanos AA (1985) Adaptation of the membrane-lipids of a deep-sea bacterium to changes in hydrostatic-pressure. Science 228:1101鈥?102 CrossRef
    37. Black PN, Dirusso CC, Metzger AK et al (1992) Cloning, sequencing, and expression of the Fadd gene of / Escherichia coli encoding acyl coenzyme鈥攁 synthetase. J Biol Chem 267:25513鈥?5520
    38. Fang JS, Kato C, Sato T et al (2004) Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteria. Comp Biochem Phys B 137:455鈥?61 CrossRef
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
Using high-throughput sequencing on metagenome to analyze marine microbial community, it is one of current main issues in the field of environmental microbe research. In this paper, we conducted the functional analysis on seven samples of metagenomic data from different depth seawater in Hawaii. The results of gene prediction and function annotation indicate that there are large amounts of potential novel genes of which functions remain unknown at present. Based on the gene annotation, codon usage bias is studied on ribosomal protein-related genes and shows an evident influence by the marine extreme environment. Furthermore, focusing on the marine environmental differences such as light intensity, dissolved oxygen, temperature and pressure among various depths, comparative analysis is carried out on related genes and metabolic pathways. Thus, the understanding as well as new insights into the correlation between marine environment and microbes are proposed at molecular level. Therefore, the studies herein afford a clue to reveal the special living strategies of microbial community from sea surface to deep sea.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700