Chiba Tendril-Less locus determines tendril organ identity in melon (Cucumis melo L.) and potentially encodes a tendril-specific TCP homolog
详细信息    查看全文
  • 作者:Shinji Mizuno ; Masatoshi Sonoda ; Yayoi Tamura ; Eisho Nishino…
  • 关键词:Cucumis melo L. ; Genetic mapping ; Tendril ; TCP transcription factor
  • 刊名:Journal of Plant Research
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:128
  • 期:6
  • 页码:941-951
  • 全文大小:3,237 KB
  • 参考文献:Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Srinivasan N, Nath U (2010) Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22:1174-189PubMedCentral CrossRef PubMed
    Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458-72PubMedCentral CrossRef PubMed
    Ameha M, Skirvin RM, Mitiku G, Bullock D, Hofmann P (1998) In vitro tendril and flower development in cucumber (Cucumis sativus) may be regulated by gibberellins. J Hort Sci Biotechnol 73:159-63
    Bell AD (1991) Plant form: an illustrated guide to flowering plant morphology. Oxford University Press, Oxford
    Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution-mutation. Nature 416:847-50CrossRef PubMed
    Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215-22CrossRef PubMed
    Darwin C (1865) On the movements and habits of climbing plants. J Linn Soc London, Bot 9:1-18CrossRef
    Dastur RH, Kapadia GA (1931) Mechanism of curvature in the tendrils of Cucurbitaceae. Ann Bot 45:279-01
    Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485-88CrossRef PubMed
    Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Picó B, Nuez F, Arús P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139-50CrossRef PubMed
    Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Camara F, Cozzuto L, Lowy E et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872-1877PubMedCentral CrossRef PubMed
    Gerbode SJ, Puzey JR, McCormick AG, Mahadevan L (2012) How the cucumber tendril coils and overwinds. Science 337:1087-091CrossRef PubMed
    Gerrath JM, Guthrie TB, Zitnak TA, Posluszny U (2008) Development of the axillary bud complex in Echinocystis lobata (Cucurbitaceae): interpreting the cucurbitaceous tendril. Am J Bot 95:773-81CrossRef PubMed
    Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51-8CrossRef PubMed
    Hagerup O (1930) Vergleichende morphologische und systematische Studienüber die Ranken und andere vegetative Organe der Cucurbitaceen und Passifloraceen. Danske Bot Arkiv 6:1-03
    Hirabayashi T, Oizumi T, Sato K, Kote T, Yoshida S, Matsuo T, Komatsuka T (2007) Breeding of tendril-less type melon cultivar ‘TL Takami-and its characteristics. Hort Res 6:313-16 (in Japanese with English abstract) CrossRef
    Hofer J, Turner L, Moreau C, Ambrose M, Isaac P, Butcher S, Weller J, Dupin A, Dalmais M, Le Signor C et al (2009) Tendril-less regulates tendril formation in Pea leaves. Plant Cell 21:420-28PubMedCentral CrossRef PubMed
    Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275-281CrossRef PubMed
    Jaffe MJ, Galston AW (1968) The physiology of tendrils. Ann Rev Plant Physiol 19:417-34CrossRef
    Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187PubMedCentral CrossRef PubMed
    Kong Q, Yuan J, Niu P, Xie J, Jiang W, Huang Y, Bie Z (2014) Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon. PLoS ONE 9:e87197PubMedCentral CrossRef PubMed
    Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30:337-48CrossRef PubMed
    Kumazawa M (1964) Morphological interpretations of axillary organs in the Cucurbitaceae. Phytomorphology 14:287-98
    Kwack SN (1995) Inheritance of determinate growth habit in Cucurbita moschata Poir. J Kor Soc Hort Sci 36:780-84
    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-81CrossRef PubMed
    Lin D, Wang T, Wang Y, Zhang X, Rhodes BB (1992) The effect of the branchless gene bl on plant morphology in watermelon. Cucurbit Genet Coop Rpt 15:74-5
    Loy B (2012-013) A recessive tendrilless mutant in ornamental pumpkin. Cucurbit Genet Coop Rpt 35-6:31-2
    Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794-99CrossRef PubMed
    Martín-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31-9CrossRef PubMed
    Monna L, Kitazawa N,
  • 作者单位:Shinji Mizuno (1) (2)
    Masatoshi Sonoda (3)
    Yayoi Tamura (4)
    Eisho Nishino (3)
    Hideyuki Suzuki (5)
    Takahide Sato (3)
    Toshikatsu Oizumi (1) (6)

    1. Southern Prefectural Horticulture Institute, Chiba Prefectural Agriculture and Forestry Research Center, 1762 Yamamoto, Tateyama, Chiba, 294-0014, Japan
    2. College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
    3. Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba, 271-8510, Japan
    4. Faculty of Horticulture, Chiba University, 648 Matsudo, Chiba, 271-8510, Japan
    5. Kazusa DNA Research Institute, 1532-3 Yana, Kisarazu, Chiba, 292-0812, Japan
    6. Institute for Horticultural Plant Breeding, 2-5-1 Kamishiki, Matsudo, Chiba, 270-2221, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Ecology
    Plant Physiology
    Plant Biochemistry
  • 出版者:Springer Japan
  • ISSN:1618-0860
文摘
Tendrils are filamentous plant organs that coil on contact with an object, thereby providing mechanical support for climbing to reach more sunlight. Plant tendrils are considered to be modified structure of leaves, stems, or inflorescence, but the origin of cucurbit tendrils is still argued because of the complexity in the axillary organ patterning. We carried out morphological and genetic analyses of the Chiba Tendril-Less (ctl) melon (Cucumis melo) mutant, and found strong evidence that the melon tendril is a modified organ derived from a stem–leaf complex of a lateral shoot. Heterozygous (CTL/ctl) plants showed traits intermediate between tendril and shoot, and ontogenies of wild-type tendrils and mutant modified shoots coincided. We identified the CTL locus in a 200-kb region in melon linkage group IX. A single base deletion in a melon TCP transcription factor gene (CmTCP1) was detected in the mutant ctl sequence, and the expression of CmTCP1 was specifically high in wild-type tendrils. Phylogenetic analysis demonstrated the novelty of the CmTCP1 protein and the unique molecular evolution of its orthologs in the Cucurbitaceae. Our results move us closer to answering the long-standing question of which organ was modified to become the cucurbit tendril, and suggest a novel function of the TCP transcription factor in plant development. Keywords Cucumis melo L. Genetic mapping Tendril TCP transcription factor

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700