Quantifying dithiothreitol displacement of functional ligands from gold nanoparticles
详细信息    查看全文
  • 作者:De-Hao Tsai (1)
    Melanie P. Shelton (1)
    Frank W. DelRio (1)
    Sherrie Elzey (1) (3)
    Suvajyoti Guha (1) (2)
    Michael R. Zachariah (1) (2)
    Vincent A. Hackley (1)
  • 关键词:Gold ; Nanoparticle ; Dithiothreitol ; Bovine serum albumin ; Polyethylene glycol ; Ligand displacement ; Thiol
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:404
  • 期:10
  • 页码:3015-3023
  • 全文大小:805KB
  • 参考文献:1. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Drug Deliv 11:169-83 CrossRef
    2. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Edit 49:3280-294 CrossRef
    3. Mirkin CA, Hill HD (2006) Nat Protoc 1:324-36 CrossRef
    4. Paciotti GF, Kingston DGI, Tamarkin L (2006) Drug Develop Res 67:47-4 CrossRef
    5. McNeil SE, Hall JB, Dobrovolskaia MA, Patri AK (2007) Nanomedicine-UK 2:789-03 CrossRef
    6. Pease LF, Tsai DH, Zangmeister RA, Zachariah MR, Tarlov MJ (2007) J Phys Chem C 111:17155-7157 CrossRef
    7. Eck W, Craig G, Sigdel A, Ritter G, Old LJ, Tang L, Brennan MF, Allen PJ, Mason MD (2008) Acs Nano 2:2263-272 CrossRef
    8. Tsai DH, Zangmeister RA, Pease LF, Tarlov MJ, Zachariah MR (2008) Langmuir 24:8483-490 CrossRef
    9. Dobrovolskaia MA, Aggarwal P, Hall JB, McLeland CB, McNeil SE (2009) Adv Drug Deliver Rev 61:428-37 CrossRef
    10. Dobrovolskaia MA, Patri AK, Zheng JW, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Nanomed-Nanotechnol 5:106-17 CrossRef
    11. Tsai DH, DelRio FW, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2010) Langmuir 26:10325-0333 CrossRef
    12. Tsai DH, Cho TJ, DelRio FW, Taurozzi J, Zachariah MR, Hackley VA (2011) J Am Chem Soc 133:8884-887 CrossRef
    13. Tsai DH, DelRio FW, Keene AM, Tyner KM, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2011) Langmuir 27:2464-477 CrossRef
    14. Tsai D-H, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA (2011) Langmuir 27:9302-313 CrossRef
    15. Tsai D-H, Elzey S, DelRio FW, Keene AM, Tyner KM, Clogston JD, MacCuspie RI, Guha S, Zachariah MR, Hackley VA (2012) Nanoscale 4(10):3208 CrossRef
    16. El-Sayed MA, Dreaden EC, Mackey MA, Huang XH, Kang B (2011) Chem Soc Rev 40:3391-404 CrossRef
    17. Mu CJ, LaVan DA, Langer RS, Zetter BR (2010) Acs Nano 4:1511-520 CrossRef
    18. Kanaras AG, Bartczak D, Muskens OL, Millar TM, Sanchez-Elsner T (2011) Nano Lett 11:1358-363 CrossRef
    19. Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, Seidel GD, Yuldasheva N, Tamarkin L (2010) Clin Cancer Res 16:6139-149 CrossRef
    20. ClinicalTrials.gov, 2011.
    21. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Nanomedicine-UK 2:789-03 CrossRef
    22. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Anal Chem 78:8313-318 CrossRef
    23. MacDairmid AR, Gallagher MC, Banks JT (2003) J Phys Chem B 107:9789-792 CrossRef
    24. Creczynski-Pasa TB, Millone MAD, Munford ML, de Lima VR, Vieira TO, Benitez GA, Pasa AA, Salvarezza RC, Vela ME (2009) Phys Chem Chem Phys 11:1077-084 CrossRef
    25. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanomedicine-UK 6:715-28 CrossRef
    26. / The / identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.
    27. Zhou L, Rai A, Piekiel N, Ma XF, Zachariah MR (2008) J Phys Chem C 112:16209-6218 CrossRef
    28. Tsai DH, Pease LF, Zangmeister RA, Tarlov MJ, Zachariah MR (2009) Langmuir 25:140-46 CrossRef
    29. Elzey S, Tsai D, Rabb S, Yu L, Winchester M, Hackley V (2012) Anal Bioanal Chem 403:145-49 CrossRef
    30. Socrates G (1994) Infrared characteristic group frequencies. Wiley, New York
    31. Woods DA, Petkov J, Bain CD (2011) J Phys Chem B 115:7353-363 CrossRef
    32. Carter DC, Ho JX (1994) Adv Protein Chem 45:153-03 CrossRef
  • 作者单位:De-Hao Tsai (1)
    Melanie P. Shelton (1)
    Frank W. DelRio (1)
    Sherrie Elzey (1) (3)
    Suvajyoti Guha (1) (2)
    Michael R. Zachariah (1) (2)
    Vincent A. Hackley (1)

    1. Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
    3. TSI Incorporated, 500 Cardigan Road, Shoreview, MN, 55126, USA
    2. Departments of Mechanical Engineering and Chemistry, University of Maryland, College Park, MD, 20740, USA
  • ISSN:1618-2650
文摘
Dithiothreitol (DTT)-based displacement is widely utilized for separating ligands from their gold nanoparticle (AuNP) conjugates, a critical step for differentiating and quantifying surface-bound functional ligands and therefore the effective surface density of these species on nanoparticle-based therapeutics and other functional constructs. The underlying assumption is that DTT is smaller and much more reactive toward gold compared with most ligands of interest, and as a result will reactively displace the ligands from surface sites thereby enabling their quantification. In this study, we use complementary dimensional and spectroscopic methods to characterize the efficiency of DTT displacement. Thiolated methoxypolyethylene glycol (SH-PEG) and bovine serum albumin (BSA) were chosen as representative ligands. Results clearly show that (1) DTT does not completely displace bound SH-PEG or BSA from AuNPs, and (2) the displacement efficiency is dependent on the binding affinity between the ligands and the AuNP surface. Additionally, the displacement efficiency for conjugated SH-PEG is moderately dependent on the molecular mass (yielding efficiencies ranging from 60 to 80?% measured by ATR-FTIR and ?0?% by ES-DMA), indicating that the displacement efficiency for SH-PEG is predominantly determined by the S–Au bond. BSA is particularly difficult to displace with DTT (i.e., the displacement efficiency is nearly zero) when it is in the so-called normal form. The displacement efficiency for BSA improves to 80?% when it undergoes a conformational change to the expanded form through a process of pH change or treatment with a surfactant. An analysis of the three-component system (SH-PEG-?BSA-?AuNP) indicates that the presence of SH-PEG decreases the displacement efficiency for BSA, whereas the displacement efficiency for SH-PEG is less impacted by the presence of BSA. Figure Schematic displacement of ligands from a AuNP by DTT

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700